Nuprl Lemma : omral_action_inj

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v,v':|r|.  ((v ⋅⋅ inj(k,v')) inj(k,v v') ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omral_inj: inj(k,v) omralist: omral(g;r) infix_ap: y all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_times: * rng_car: |r| ocmon: OCMon grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T infix_ap: y uall: [x:A]. B[x] cdrng: CDRng crng: CRng rng: Rng implies:  Q squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ocmon: OCMon abmonoid: AbMon mon: Mon rng_when: rng_when
Lemmas referenced :  omral_lookups_same_a omral_action_wf omral_inj_wf rng_times_wf equal_wf squash_wf true_wf rng_car_wf lookup_omral_action lookup_omral_inj iff_weakening_equal grp_car_wf cdrng_wf ocmon_wf rng_times_when_l grp_eq_wf rng_when_wf infix_ap_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis applyEquality isectElimination setElimination rename independent_functionElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v,v':|r|.    ((v  \mcdot{}\mcdot{}  inj(k,v'))  =  inj(k,v  *  v'))



Date html generated: 2017_10_01-AM-10_07_08
Last ObjectModification: 2017_03_03-PM-01_14_53

Theory : polynom_3


Home Index