Nuprl Lemma : omral_action_inj
∀g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v,v':|r|.  ((v ⋅⋅ inj(k,v')) = inj(k,v * v') ∈ |omral(g;r)|)
Proof
Definitions occuring in Statement : 
omral_action: v ⋅⋅ ps, 
omral_inj: inj(k,v), 
omralist: omral(g;r), 
infix_ap: x f y, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
cdrng: CDRng, 
rng_times: *, 
rng_car: |r|, 
ocmon: OCMon, 
grp_car: |g|, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
infix_ap: x f y, 
uall: ∀[x:A]. B[x], 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
rng_when: rng_when
Lemmas referenced : 
omral_lookups_same_a, 
omral_action_wf, 
omral_inj_wf, 
rng_times_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
lookup_omral_action, 
lookup_omral_inj, 
iff_weakening_equal, 
grp_car_wf, 
cdrng_wf, 
ocmon_wf, 
rng_times_when_l, 
grp_eq_wf, 
rng_when_wf, 
infix_ap_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v,v':|r|.    ((v  \mcdot{}\mcdot{}  inj(k,v'))  =  inj(k,v  *  v'))
Date html generated:
2017_10_01-AM-10_07_08
Last ObjectModification:
2017_03_03-PM-01_14_53
Theory : polynom_3
Home
Index