Nuprl Lemma : lookup_omral_inj

g:OCMon. ∀r:CDRng. ∀k,k':|g|. ∀v:|r|.  ((inj(k,v)[k']) (when =b k'. v) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_inj: inj(k,v) lookup: as[k] infix_ap: y all: x:A. B[x] equal: t ∈ T add_grp_of_rng: r↓+gp cdrng: CDRng rng_zero: 0 rng_car: |r| mon_when: when b. p oset_of_ocmon: g↓oset ocmon: OCMon grp_eq: =b grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| grp_id: e pi2: snd(t) set_eq: =b omral_inj: inj(k,v)
Lemmas referenced :  lookup_oal_inj oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf cdrng_is_abdmonoid cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.  \mforall{}v:|r|.    ((inj(k,v)[k'])  =  (when  k  =\msubb{}  k'.  v))



Date html generated: 2017_10_01-AM-10_05_23
Last ObjectModification: 2017_03_03-PM-01_11_54

Theory : polynom_3


Home Index