Nuprl Lemma : omral_action_one

g:OCMon. ∀r:CDRng. ∀ps:|omral(g;r)|.  ((1 ⋅⋅ ps) ps ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omralist: omral(g;r) all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_one: 1 ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] cdrng: CDRng crng: CRng rng: Rng implies:  Q ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B dset: DSet squash: T prop: oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  omral_lookups_same_a omral_action_wf rng_one_wf grp_car_wf set_car_wf omralist_wf dset_wf cdrng_wf ocmon_wf equal_wf squash_wf true_wf rng_car_wf lookup_omral_action lookup_wf oset_of_ocmon_wf0 rng_zero_wf iff_weakening_equal rng_times_one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis independent_functionElimination applyEquality lambdaEquality sqequalRule imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps:|omral(g;r)|.    ((1  \mcdot{}\mcdot{}  ps)  =  ps)



Date html generated: 2017_10_01-AM-10_06_54
Last ObjectModification: 2017_03_03-PM-01_14_31

Theory : polynom_3


Home Index