Nuprl Lemma : cut-order-iff1

[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X). ∀a,b:E(X).
    (a ≤(X;f) ⇐⇒ (a b ∈ E(X)) ∨ ((f b < b) ∧ a ≤(X;f) b) ∨ ((↑b ∈b prior(X)) ∧ a ≤(X;f) prior(X)(b)))


Proof




Definitions occuring in Statement :  cut-order: a ≤(X;f) b es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causl: (e < e') assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q apply: a universe: Type equal: t ∈ T
Lemmas :  or_wf equal_wf es-E-interface_wf es-causl_wf event-ordering+_subtype fset-member_wf-cut cut-of_wf fset-singleton_wf assert_wf in-eclass_wf es-prior-interface_wf0 es-interface-subtype_rel2 es-E_wf top_wf subtype_top eclass-val_wf2 es-prior-interface_wf iff_wf squash_wf true_wf es-cut_wf sys-antecedent_wf eclass_wf event-ordering+_wf cut-of-singleton iff_weakening_equal sq_stable__es-causle bool_wf es-eq-E_wf equal-wf-T-base member-fset-singleton es-eq_wf-interface fset-member_wf member-fset-union fset-union_wf es-causle_weakening_eq es-causle_wf and_wf bnot_wf not_wf false_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot assert-es-eq-E-2 iff_transitivity iff_weakening_uiff es-causl_transitivity2 es-causl_irreflexivity

Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).  \mforall{}a,b:E(X).
        (a  \mleq{}(X;f)  b
        \mLeftarrow{}{}\mRightarrow{}  (a  =  b)  \mvee{}  ((f  b  <  b)  \mwedge{}  a  \mleq{}(X;f)  f  b)  \mvee{}  ((\muparrow{}b  \mmember{}\msubb{}  prior(X))  \mwedge{}  a  \mleq{}(X;f)  prior(X)(b)))



Date html generated: 2015_07_21-PM-04_04_23
Last ObjectModification: 2015_02_04-PM-06_07_35

Home Index