Nuprl Lemma : es-prior-match_wf

[Info,A,B:Type]. ∀[R:A ─→ B ─→ 𝔹]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].  (es-prior-match(R; X; Y) ∈ EClass(A × B))


Proof




Definitions occuring in Statement :  es-prior-match: es-prior-match(R; X; Y) eclass: EClass(A[eo; e]) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  in-eclass_wf es-prior-val_wf top_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype bool_wf eqtt_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eclass-val_wf single-bag_wf eqff_to_assert assert-bnot iff_transitivity assert_wf iff_weakening_uiff assert_of_band empty-bag_wf eclass_wf event-ordering+_wf

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (es-prior-match(R;  X;  Y)  \mmember{}  EClass(A  \mtimes{}  B))



Date html generated: 2015_07_21-PM-03_49_29
Last ObjectModification: 2015_01_27-PM-06_01_52

Home Index