Nuprl Lemma : fpf-compatible-single-iff

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[x:A]. ∀[v:B[x]].
  uiff(f || v;v f(x) ∈ B[x] supposing ↑x ∈ dom(f))


Proof




Definitions occuring in Statement :  fpf-single: v fpf-compatible: || g fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  assert_wf fpf-compatible_wf fpf-single_wf fpf_ap_single_lemma fpf-dom_wf top_wf subtype-fpf2 subtype_top isect_wf equal_wf fpf-ap_wf fpf_wf deq_wf fpf-single-dom fpf-single-dom-sq safe-assert-deq and_wf member_wf assert_elim subtype_base_sq bool_wf bool_subtype_base subtype_rel_self subtype_rel_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[v:B[x]].
    uiff(f  ||  x  :  v;v  =  f(x)  supposing  \muparrow{}x  \mmember{}  dom(f))



Date html generated: 2015_07_17-AM-11_12_56
Last ObjectModification: 2015_01_28-AM-07_43_41

Home Index