Nuprl Lemma : subtype-set-hasloc

[i:Id]. ∀[d:{k:Knd| ↑hasloc(k;i)}  List].  ({k:Knd| (k ∈ d)}  ⊆{k:{k:Knd| ↑hasloc(k;i)} (k ∈ d)} )


Proof




Definitions occuring in Statement :  hasloc: hasloc(k;i) Knd: Knd Id: Id l_member: (x ∈ l) list: List assert: b subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]} 
Lemmas :  list_wf Knd_wf assert_wf hasloc_wf Id_wf l_member_wf subtype_rel_list l_member-settype l_member-set2 subtype_rel_nested_set subtype_rel_sets subtype_base_sq union_subtype_base IdLnk_wf product_subtype_base atom2_subtype_base select_wf sq_stable__le set_wf assert_elim bool_wf bool_subtype_base equal_wf
\mforall{}[i:Id].  \mforall{}[d:\{k:Knd|  \muparrow{}hasloc(k;i)\}    List].    (\{k:Knd|  (k  \mmember{}  d)\}    \msubseteq{}r  \{k:\{k:Knd|  \muparrow{}hasloc(k;i)\}  |  (k  \mmember{}  d)\000C\}  )



Date html generated: 2015_07_17-AM-09_14_04
Last ObjectModification: 2015_01_28-AM-07_55_32

Home Index