Nuprl Lemma : st-decrypt_wf
∀[T:Id ─→ Type]. ∀[tab:secret-table(T)]. ∀[kx:ℕ + Atom1 × Atom1]. (decrypt(tab;kx) ∈ data(T)?)
Proof
Definitions occuring in Statement :
st-decrypt: decrypt(tab;kval)
,
secret-table: secret-table(T)
,
data: data(T)
,
Id: Id
,
nat: ℕ
,
atom: Atom$n
,
uall: ∀[x:A]. B[x]
,
unit: Unit
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
product: x:A × B[x]
,
union: left + right
,
universe: Type
Lemmas :
isl_wf,
nat_wf,
data_wf,
unit_wf2,
st-lookup_wf,
bool_wf,
eqtt_to_assert,
st-key-match_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
it_wf,
spread_wf,
assert_elim,
bfalse_wf,
and_wf,
btrue_neq_bfalse,
secret-table_wf,
Id_wf
\mforall{}[T:Id {}\mrightarrow{} Type]. \mforall{}[tab:secret-table(T)]. \mforall{}[kx:\mBbbN{} + Atom1 \mtimes{} Atom1]. (decrypt(tab;kx) \mmember{} data(T)?)
Date html generated:
2015_07_17-AM-08_57_15
Last ObjectModification:
2015_01_27-PM-01_03_07
Home
Index