Nuprl Lemma : Paxos-spec6-Proposal-invariant

[Info:Type]
  es:EO+(Info). failset:Id List.
    [T:Type]
      f:. acceptors:Id List. Reserve,NoProposal,NewBallot:EClass(). VoteState:EClass(AcceptorState).
      Proposal:EClass(  T). AcceptOrReject:EClass(  T  ). leader:  Id. Decide,Input:EClass(T).
      Vote:EClass(Id    ). Collect:EClass(    T).
        (Paxos-spec6-body{i:l}(Info;es;T;f;acceptors;
                               Reserve;VoteState;Proposal;
                               AcceptOrReject;leader;Decide;
                               Vote;Input;Collect;NoProposal;
                               NewBallot;failset)
         (p:E(Proposal)
              ((np:E(NoProposal). (((fst(Proposal(p))) = NoProposal(np))))
               (loc(p) = (leader (fst(Proposal(p)))))
               (L:{a:Id| (a  acceptors)}  List
                  ((||L|| = (f + 1))
                   no_repeats(Id;L)
                   (aL.r:E(Reserve). ((loc(r) = a)  r c p  ((fst(Proposal(p))) = Reserve(r))))))
               (nb:E(NewBallot). ((nb <loc p)  ((fst(Proposal(p))) = NewBallot(nb)))))))


Proof not projected




Definitions occuring in Statement :  Paxos-spec6-body: Paxos-spec6-body paxos-acceptor-state: AcceptorState es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causle: e c e' es-locl: (e <loc e') es-loc: loc(e) Id: Id length: ||as|| bool: nat_plus: nat: uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q set: {x:A| B[x]}  apply: f a function: x:A  B[x] product: x:A  B[x] list: type List add: n + m natural_number: $n int: universe: Type equal: s = t l_all: (xL.P[x]) no_repeats: no_repeats(T;l) l_member: (x  l)
Definitions :  bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) axiom: Ax bag-only: only(bs) bag-size: bag-size(bs) fpf: a:A fp-B[a] bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} limited-type: LimitedType bfalse: ff eq_bool: p =b q le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit eclass-compose1: f o X grp_car: |g| atom: Atom es-base-E: es-base-E(es) token: "$token" cand: A c B guard: {T} btrue: tt sq_type: SQType(T) strong-subtype: strong-subtype(A;B) ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] uimplies: b supposing a alle-lt: e<e'.P[e] es-le: e loc e'  union: left + right or: P  Q rev_implies: P  Q iff: P  Q es-class-causal-mrel-fail: es-class-causal-mrel-fail es-class-def: es-class-def es-class-causal-rel-fail: es-class-causal-rel-fail le: A  B real: rationals: dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) record-select: r.x infix_ap: x f y es-causl: (e < e') prop: subtype: S  T es-E: E natural_number: $n add: n + m length: ||as|| apply: f a es-loc: loc(e) bool: paxos-acceptor-state: AcceptorState member: t  T void: Void false: False universe: Type nat_plus: so_lambda: x y.t[x; y] Paxos-spec6-body: Paxos-spec6-body not: A l_member: (x  l) list: type List no_repeats: no_repeats(T;l) Id: Id es-causle: e c e' l_all: (xL.P[x]) int: set: {x:A| B[x]}  top: Top es-E-interface: E(X) event-ordering+: EO+(Info) event_ordering: EO es-locl: (e <loc e') exists: x:A. B[x] isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] implies: P  Q all: x:A. B[x] function: x:A  B[x] Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  D: Error :D,  RepeatFor: Error :RepeatFor,  empty-bag: {} pair: <a, b> single-bag: {x} lt_int: i <z j ifthenelse: if b then t else f fi  spreadn: spread3 lambda: x.A[x] es-filter-image: f[X] nat: product: x:A  B[x] eclass: EClass(A[eo; e]) equal: s = t eclass-val: X(e) pi1: fst(t) pi2: snd(t) less_than: a < b and: P  Q in-eclass: e  X assert: b AssertBY: Error :AssertBY,  THENM: Error :THENM,  permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] squash: T it: IdLnk: IdLnk proper-iseg: L1 < L2 iseg: l1  l2 l_exists: (xL. P[x]) gt: i > j map: map(f;as) eq_knd: a = b fpf-dom: x  dom(f) intensional-universe: IType nil: [] list_ind: list_ind def int_eq: if a=b  then c  else d atom_eq: atomeqn def sqequal: s ~ t so_apply: x[s] append: as @ bs locl: locl(a) Knd: Knd atom: Atom$n id-deq: IdDeq paxos-state-info: Info(s) es-tagged-true-class: Tagged_tt(X) MaxVote: MaxVote(es;T;Vote;e;s) paxos-state-name: Name(s) paxos-state-value: Value(s) minus: -n spread: spread def es-prior-val: (X)' filter: filter(P;l) paxos-state-reservation: Reservation(s) paxos-state-ballot: Ballot(s) es-interface-predecessors: (X)(e) mapfilter: mapfilter(f;P;L) list-max: list-max(x.f[x];L) let: let multiply: n * m es-first-at: e is first@ i s.t.  e.P[e] record: record(x.T[x])
Lemmas :  squash_wf length_wf1 es-first-at-unique es-loc_wf paxos-state-reservation_wf es-interface-predecessors_wf mapfilter_wf paxos-state-ballot_wf list-max_wf pos_length2 length_wf_nat list-subtype uiff_wf assert-eq-id nat_properties btrue_wf bfalse_wf unit_wf intensional-universe_wf es-interface-val_wf2 pos-length equal-nil-sq-nil filter_wf length-map filter_type list-max-property2 es-prior-val_wf paxos-state-value_wf bag_wf assert_of_eq_int not_functionality_wrt_uiff bag-only_wf permutation_wf bnot_of_le_int Id_wf eclass_wf Paxos-spec6-body_wf es-E-interface_wf not_wf nat_wf l_member_wf no_repeats_wf l_all_wf es-causle_wf es-locl_wf event-ordering+_wf uall_wf nat_plus_wf Paxos-spec6-Collect-invariant es-E_wf event-ordering+_inc paxos-acceptor-state_wf bool_wf nat_plus_properties le_wf nat_plus_inc member_wf es-interface-top assert_wf false_wf ifthenelse_wf in-eclass_wf true_wf subtype_base_sq bool_subtype_base assert_elim pi1_wf_top eclass-val_wf top_wf es-base-E_wf subtype_rel_self pi2_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf subtype_rel_wf pi1_wf eq_int_wf bag-size_wf assert_of_lt_int assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int le_int_wf lt_int_wf set_subtype_base int_subtype_base

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}failset:Id  List.
        \mforall{}[T:Type]
            \mforall{}f:\mBbbN{}\msupplus{}.  \mforall{}acceptors:Id  List.  \mforall{}Reserve,NoProposal,NewBallot:EClass(\mBbbN{}).
            \mforall{}VoteState:EClass(AcceptorState).  \mforall{}Proposal:EClass(\mBbbN{}  \mtimes{}  T).  \mforall{}AcceptOrReject:EClass(\mBbbN{}  \mtimes{}  T  \mtimes{}  \mBbbB{}).
            \mforall{}leader:\mBbbN{}  {}\mrightarrow{}  Id.  \mforall{}Decide,Input:EClass(T).  \mforall{}Vote:EClass(Id  \mtimes{}  \mBbbN{}  \mtimes{}  \mBbbB{}).
            \mforall{}Collect:EClass(\mBbbN{}  \mtimes{}  \mBbbZ{}  \mtimes{}  T).
                (Paxos-spec6-body\{i:l\}(Info;es;T;f;acceptors;
                                                              Reserve;VoteState;Proposal;
                                                              AcceptOrReject;leader;Decide;
                                                              Vote;Input;Collect;NoProposal;
                                                              NewBallot;failset)
                {}\mRightarrow{}  (\mforall{}p:E(Proposal)
                            ((\mforall{}np:E(NoProposal).  (\mneg{}((fst(Proposal(p)))  =  NoProposal(np))))
                            \mwedge{}  (loc(p)  =  (leader  (fst(Proposal(p)))))
                            \mwedge{}  (\mexists{}L:\{a:Id|  (a  \mmember{}  acceptors)\}    List
                                    ((||L||  =  (f  +  1))
                                    \mwedge{}  no\_repeats(Id;L)
                                    \mwedge{}  (\mforall{}a\mmember{}L.\mexists{}r:E(Reserve)
                                                      ((loc(r)  =  a)  \mwedge{}  r  c\mleq{}  p  \mwedge{}  ((fst(Proposal(p)))  =  Reserve(r))))))
                            \mwedge{}  (\mexists{}nb:E(NewBallot).  ((nb  <loc  p)  \mwedge{}  ((fst(Proposal(p)))  =  NewBallot(nb)))))))


Date html generated: 2011_10_20-PM-04_38_53
Last ObjectModification: 2011_06_18-PM-02_03_33

Home Index