{ [Info,T:Type]. [X,Y:EClass(T)]. [es:EO+(Info)]. [e:E].
    ((X)' es e) = ((Y)' es e) 
    supposing e':E. ((e' <loc e)  ((X es e') = (Y es e'))) }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q apply: f a universe: Type equal: s = t bag: bag(T)
Definitions :  lambda: x.A[x] limited-type: LimitedType subtype: S  T pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B axiom: Ax es-prior-val: (X)' apply: f a prop: es-locl: (e <loc e') bag: bag(T) implies: P  Q function: x:A  B[x] all: x:A. B[x] uimplies: b supposing a equal: s = t universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E: E event-ordering+: EO+(Info) event_ordering: EO in-eclass: e  X iff: P  Q real: grp_car: |g| nat: true: True squash: T int: rev_implies: P  Q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) false: False void: Void atom: Atom es-base-E: es-base-E(es) token: "$token" quotient: x,y:A//B[x; y] es-E-interface: E(X) top: Top bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q es-prior-interface: prior(X) bnot: b bool: union: left + right unit: Unit eclass-val: X(e) single-bag: {x} es-causl: (e < e') es-loc: loc(e) fpf-cap: f(x)?z Id: Id or: P  Q intensional-universe: IType fpf-dom: x  dom(f) it: guard: {T} sq_type: SQType(T) record: record(x.T[x]) so_lambda: x.t[x] sqequal: s ~ t bag-only: only(bs) Auto: Error :Auto,  THEN: Error :THEN,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  cand: A c B exists: x:A. B[x] empty-bag: {} tactic: Error :tactic
Lemmas :  empty-bag_wf es-is-prior-interface assert_of_eq_int le_wf nat_properties bag-only_wf set_subtype_base subtype_base_sq false_wf ifthenelse_wf assert_elim not_functionality_wrt_iff intensional-universe_wf es-loc_wf eclass-val_wf2 es-locl-total Id_wf es-prior-interface-val single-bag_wf eclass-val_wf subtype_rel_self es-base-E_wf top_wf es-interface-top es-E-interface_wf es-interface-subtype_rel2 es-prior-interface_wf1 es-prior-interface_wf in-eclass_wf assert_of_bnot eqff_to_assert uiff_transitivity bool_wf not_wf eqtt_to_assert subtype_rel_wf bnot_wf iff_functionality_wrt_iff iff_weakening_uiff assert_functionality_wrt_uiff squash_wf true_wf iff_wf rev_implies_wf eq_int_wf bag-size_wf nat_wf assert_wf eclass_wf event-ordering+_wf event-ordering+_inc es-E_wf bag_wf member_wf es-locl_wf es-prior-val_wf

\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    ((X)'  es  e)  =  ((Y)'  es  e)  supposing  \mforall{}e':E.  ((e'  <loc  e)  {}\mRightarrow{}  ((X  es  e')  =  (Y  es  e')))


Date html generated: 2011_08_16-PM-05_03_28
Last ObjectModification: 2011_06_20-AM-01_09_35

Home Index