{ [Info:Type]. [es:EO+(Info)]. [T:Type]. [X:EClass(T)]. [P:E(X)  ].
  [n:]. [e:E]. [i:Id].
    {(e  X)  (P[e])} 
    supposing e is first@ i s.t.  q.||filter(e.P[e];(X)(q))|| = n }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first-at: e is first@ i s.t.  e.P[e] es-E: E Id: Id length: ||as|| assert: b bool: nat_plus: uimplies: b supposing a uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P  Q lambda: x.A[x] function: x:A  B[x] int: universe: Type equal: s = t filter: filter(P;l)
Definitions :  in-eclass: e  X strong-subtype: strong-subtype(A;B) alle-lt: e<e'.P[e] le: A  B ge: i  j  not: A uiff: uiff(P;Q) implies: P  Q pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] guard: {T} so_apply: x[s] l_member: (x  l) product: x:A  B[x] and: P  Q assert: b es-loc: loc(e) less_than: a < b es-interface-predecessors: (X)(e) filter: filter(P;l) length: ||as|| limited-type: LimitedType atom: Atom$n prop: int: so_lambda: x.t[x] es-first-at: e is first@ i s.t.  e.P[e] uimplies: b supposing a Id: Id set: {x:A| B[x]}  nat_plus: union: left + right es-E-interface: E(X) bool: subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T equal: s = t event-ordering+: EO+(Info) tactic: Error :tactic,  eclass-val: X(e) es-pred: pred(e) IdLnk: IdLnk append: as @ bs locl: locl(a) Knd: Knd cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) isl: isl(x) can-apply: can-apply(f;x) or: P  Q divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) list: type List i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) unit: Unit exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) int_nzero: real: nat: fpf: a:A fp-B[a] cand: A c B tl: tl(l) hd: hd(l) bfalse: ff eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q bnot: b cons: [car / cdr] nil: [] btrue: tt es-prior-interface: prior(X) sq_type: SQType(T) iff: P  Q rev_implies: P  Q fpf-cap: f(x)?z sqequal: s ~ t es-le-before: loc(e) eclass-events: eclass-events(es;X;L) es-first: first(e) lsrc: source(l) ldst: destination(l) es-init: es-init(es;e) natural_number: $n grp_car: |g| select: l[i] intensional-universe: IType fpf-sub: f  g map-class: (f[v] where v from X) deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) map: map(f;as)
Lemmas :  filter_wf_top append-nil subtype_rel_list intensional-universe_wf l_member_wf list-subtype list-set-type2 nat_wf select_wf l_all_wf es-le-loc atom2_subtype_base es-le_wf int_subtype_base es-loc-pred false_wf set_subtype_base eclass-events_wf es-le-before_wf es-prior-interface-locl filter_append_sq eclass-val_wf eclass-val_wf2 es-locl_irreflexivity es-interface-subtype_rel2 es-prior-interface_wf top_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff bool_subtype_base subtype_base_sq eqtt_to_assert bool_cases es-interface-predecessors-general-step squash_wf true_wf rev_implies_wf iff_wf es-prior-interface_wf1 bnot_wf subtype_rel_wf es-first-at-implies decidable_wf decidable__cand decidable__assert uiff_inversion not_wf length_wf_nat es-locl_wf es-causl_wf member_wf eclass_wf es-E-interface_wf Id_wf es-interface-top es-interface-predecessors_wf event-ordering+_inc subtype_rel_self es-E_wf es-loc_wf filter_wf length_wf1 es-first-at_wf nat_plus_wf bool_wf event-ordering+_wf nat_plus_properties assert_witness assert_wf guard_wf in-eclass_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[e:E].  \mforall{}[i:Id].
    \{(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (\muparrow{}P[e])\}  supposing  e  is  first@  i  s.t.    q.||filter(\mlambda{}e.P[e];\mleq{}(X)(q))||  =  n


Date html generated: 2011_08_16-PM-05_24_20
Last ObjectModification: 2011_06_20-AM-01_23_04

Home Index