{ [Info,A1,B1,A2,B2,C:Type]. [X1:EClass(A1)]. [X2:EClass(A2)]. [b1:B1].
  [b2:B2]. [acc1:B1  A1  B1]. [acc2:B2  A2  B2]. [F1:B1  C].
  [F2:B2  C].
    ((F1[x] where x from es-interface-accum(acc1;b1;X1))
       = (F2[x] where x from es-interface-accum(acc2;b2;X2))) supposing 
       ((a:B1. b:B2.
           (((F1 a) = (F2 b))
            (es:EO+(Info). e:E.
                 ((e  X1)
                  (e  X1)
                  (F1[acc1 a X1(e)] = F2[acc2 b X2(e)]))))) and 
       (F1[b1] = F2[b2]) and 
       (es:EO+(Info). e:E.  (e  X1  e  X2))) }

{ Proof }



Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) map-class: (f[v] where v from X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: P  Q implies: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t
Definitions :  axiom: Ax es-interface-accum: es-interface-accum(f;x;X) map-class: (f[v] where v from X) guard: {T} true: True false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  es-E-interface: E(X) eclass-val: X(e) so_apply: x[s] limited-type: LimitedType fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) list: type List le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) eq_atom: x =a y eq_atom: eq_atom$n(x;y) apply: f a record-select: r.x dep-isect: Error :dep-isect,  record+: record+ subtype_rel: A r B top: Top rev_implies: P  Q in-eclass: e  X implies: P  Q product: x:A  B[x] and: P  Q prop: assert: b iff: P  Q uimplies: b supposing a subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] universe: Type eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] member: t  T equal: s = t so_lambda: x y.t[x; y] Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  sq_type: SQType(T) sqequal: s ~ t tag-by: zT record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) fpf-cap: f(x)?z intensional-universe: IType inr: inr x  es-loc: loc(e) set: {x:A| B[x]}  unit: Unit list_accum: list_accum(x,a.f[x; a];y;l) inl: inl x  bfalse: ff btrue: tt es-interface-at: X@i cond-class: [X?Y] cand: A c B void: Void suptype: suptype(S; T) isl: isl(x) can-apply: can-apply(f;x) atom: Atom token: "$token" bool: IdLnk: IdLnk Id: Id append: as @ bs locl: locl(a) Knd: Knd sq_stable: SqStable(P) or: P  Q eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) union: left + right so_lambda: x.t[x] pair: <a, b> es-interface-predecessors: (X)(e)
Lemmas :  list_accum_equality es-interface-predecessors-equal map-class_wf es-interface-accum_wf uiff_inversion subtype_rel_self map-class_functionality top_wf rev_implies_wf btrue_wf bfalse_wf bool_wf unit_wf es-interface-predecessors_wf Id_wf es-E-interface_wf list_accum_wf es-loc_wf intensional-universe_wf es-interface-subtype_rel is-interface-accum es-interface-accum-val subtype_base_sq list_subtype_base set_subtype_base list-equal-set2 bool_subtype_base assert_elim event-ordering+_wf es-E_wf assert_wf es-interface-top subtype_rel_wf eclass_wf member_wf in-eclass_wf iff_wf event-ordering+_inc eclass-val_wf false_wf ifthenelse_wf true_wf

\mforall{}[Info,A1,B1,A2,B2,C:Type].  \mforall{}[X1:EClass(A1)].  \mforall{}[X2:EClass(A2)].  \mforall{}[b1:B1].  \mforall{}[b2:B2].  \mforall{}[acc1:B1
                                                                                                                                                                                      {}\mrightarrow{}  A1
                                                                                                                                                                                      {}\mrightarrow{}  B1].
\mforall{}[acc2:B2  {}\mrightarrow{}  A2  {}\mrightarrow{}  B2].  \mforall{}[F1:B1  {}\mrightarrow{}  C].  \mforall{}[F2:B2  {}\mrightarrow{}  C].
    ((F1[x]  where  x  from  es-interface-accum(acc1;b1;X1))
          =  (F2[x]  where  x  from  es-interface-accum(acc2;b2;X2)))  supposing 
          ((\mforall{}a:B1.  \mforall{}b:B2.
                  (((F1  a)  =  (F2  b))
                  {}\mRightarrow{}  (\mforall{}es:EO+(Info).  \mforall{}e:E.
                              ((\muparrow{}e  \mmember{}\msubb{}  X1)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X1)  {}\mRightarrow{}  (F1[acc1  a  X1(e)]  =  F2[acc2  b  X2(e)])))))  and 
          (F1[b1]  =  F2[b2])  and 
          (\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  X2)))


Date html generated: 2011_08_16-PM-05_17_30
Last ObjectModification: 2011_06_20-AM-01_19_19

Home Index