Nuprl Lemma : programmable-iff

Info,A:Type. X:EClass(A).
  Programmable(A;X)  p:eclass-program{i:l}(Info). ((eclass-program-type(p) = A)  (X = defined-class(p))) 
  supposing (Info)  valueall-type(A)


Proof not projected




Definitions occuring in Statement :  programmable: Programmable(A;X) defined-class: defined-class(prg) eclass-program-type: eclass-program-type(prg) eclass-program: eclass-program{i:l}(Info) eclass: EClass(A[eo; e]) uimplies: b supposing a all: x:A. B[x] exists: x:A. B[x] iff: P  Q squash: T and: P  Q universe: Type equal: s = t valueall-type: valueall-type(T)
Definitions :  set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] es-E-interface: E(X) sq_type: SQType(T) eq_atom: eq_atom$n(x;y) atom: Atom es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ cand: A c B bool: Knd: Knd IdLnk: IdLnk rationals: list: type List apply: f a so_apply: x[s] union: left + right or: P  Q guard: {T} l_member: (x  l) assert: b top: Top spread: spread def pi1: fst(t) defined-class: defined-class(prg) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] eclass-program-type: eclass-program-type(prg) limited-type: LimitedType Id: Id bag: bag(T) dataflow: dataflow(A;B) so_lambda: x.t[x] fpf: a:A fp-B[a] member: t  T fpf-single: x : v fpf-join: f  g strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q rev_implies: P  Q implies: P  Q function: x:A  B[x] so_lambda: x y.t[x; y] equal: s = t eclass-program: eclass-program{i:l}(Info) prop: programmable: Programmable(A;X) eclass: EClass(A[eo; e]) universe: Type exists: x:A. B[x] product: x:A  B[x] and: P  Q MaAuto: Error :MaAuto,  tactic: Error :tactic,  rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) null-df-program: null-df-program(B) spreadn: spread4 df-program-meaning: df-program-meaning(dfp) fpf-dom: x  dom(f) false: False rcv: rcv(l,tg) locl: locl(a) unit: Unit corec: corec(T.F[T]) atom: Atom$n df-program-type: df-program-type(dfp) dataflow-program: DataflowProgram(A) empty-bag: {} constant-dataflow: constant-dataflow(b) id-deq: IdDeq fpf-cap: f(x)?z dataflow-set-class: dataflow-set-class(x.P[x]) Auto: Error :Auto,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  inl: inl x  pair: <a, b> dataflow-ap: df(a) fpf-compose: g o f dataflow-history-val: dataflow-history-val(es;e;x.P[x]) es-le-before: loc(e) es-info: info(e) map: map(f;as) es-loc: loc(e) data-stream: data-stream(P;L) true: True void: Void null: null(as) last: last(L) squash: T lt_int: i <z j le_int: i z j bfalse: ff nat: deq: EqDecider(T) btrue: tt deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q deq-member: deq-member(eq;x;L) bnot: b int: compose: f o g fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) es-le: e loc e'  listp: A List combination: Combination(n;T) tl: tl(l) hd: hd(l) cons: [car / cdr] data_stream_nil: data_stream_nil{data_stream_nil_compseq_tag_def:o}(P) nil: [] quotient: x,y:A//B[x; y] rec_dataflow_ap: rec_dataflow_ap{rec_dataflow_ap_compseq_tag_def:o}(a; v21,v22.next[v21; v22]; s0) pi2: snd(t) sqequal: s ~ t BHyp: Error :BHyp,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  length: ||as|| upto: upto(n) lelt: i  j < k real: grp_car: |g| select: l[i] natural_number: $n int_seg: {i..j} sq_stable: SqStable(P) fpf-sub: f  g class-program: ClassProgram(T) ma-state: State(ds) b-union: A  B isect2: T1  T2 fset: FSet{T} record: record(x.T[x]) tag-by: zT permutation: permutation(T;L1;L2) add: n + m subtract: n - m label: ...$L... t gt: i > j iseg: l1  l2 proper-iseg: L1 < L2
Lemmas :  ge_wf non_neg_length nat_properties data-stream_wf permutation_wf sq_stable__subtype_rel dataflow_subtype constant-dataflow_wf df-program-meaning_wf bool_subtype_base subtype_base_sq es-le-before-not-null null-map null-data-stream bfalse_wf int_seg_wf le_wf upto_wf length_wf_nat select-map length_upto empty-bag_wf length_wf list_extensionality length-map map-map es-le-before_wf2 es-le_wf data-stream-null-df-program constant-data-stream data-stream-cons nat_wf bool_wf es-loc_wf id-deq_wf deq-member_wf l_member_wf bnot_wf assert-deq-member not_functionality_wrt_iff assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert eqtt_to_assert last_wf squash_wf null_wf3 top_wf not_wf false_wf assert_wf es-info_wf es-le-before_wf map_wf dataflow-program_wf df-program-type_wf fpf-compose_wf dataflow-set-class_wf fpf-cap_wf unit_wf dataflow-ap_wf member_wf Error :eclass_wf,  defined-class_wf event-ordering+_wf event-ordering+_inc es-E_wf eclass-program-type_wf eclass-program_wf fpf_wf Id_wf dataflow_wf bag_wf programmable_wf subtype_rel_wf es-interface-top iff_wf rev_implies_wf es-base-E_wf subtype_rel_self es-interface-subtype_rel2

\mforall{}Info,A:Type.  \mforall{}X:EClass(A).
    Programmable(A;X)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}p:eclass-program\{i:l\}(Info).  ((eclass-program-type(p)  =  A)  \mwedge{}  (X  =  defined-class(p))) 
    supposing  (\mdownarrow{}Info)  \mwedge{}  valueall-type(A)


Date html generated: 2012_01_23-PM-12_30_44
Last ObjectModification: 2011_12_19-PM-06_33_43

Home Index