{ [Info,T:Type]. [G:es:EO+(Info)  E  bag(T)]. [F:es:EO+(Info)
                                                         e':E
                                                         T
                                                         {e:E| (e' <loc e)} 
                                                         bag(T)].
  [X:EClass(T)].
    X
    = RecClass(first e
                 G[es;e]
               or next e after e' with value v
                   F[es;e';v;e]) 
    supposing es:EO+(Info). e:E.
                ((X es e)
                = if e  prior(X)
                  then let e' = prior(X)(e) in
                           F[es;e';X(e');e]
                  else G[es;e]
                  fi ) }

{ Proof }



Definitions occuring in Statement :  es-rec-class: es-rec-class es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E ifthenelse: if b then t else f fi  let: let uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] all: x:A. B[x] set: {x:A| B[x]}  apply: f a function: x:A  B[x] universe: Type equal: s = t bag: bag(T)
Definitions :  fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B so_apply: x[s1;s2] so_apply: x[s1;s2;s3;s4] eclass-val: X(e) let: let es-E-interface: E(X) top: Top es-prior-interface: prior(X) in-eclass: e  X ifthenelse: if b then t else f fi  apply: f a limited-type: LimitedType uimplies: b supposing a lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) prop: es-locl: (e <loc e') set: {x:A| B[x]}  subtype: S  T universe: Type bag: bag(T) es-E: E event_ordering: EO event-ordering+: EO+(Info) member: t  T equal: s = t all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] pair: <a, b> true: True squash: T es-causl: (e < e') real: grp_car: |g| minus: -n add: n + m subtract: n - m void: Void false: False natural_number: $n int: nat: exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) guard: {T} implies: P  Q so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) es-rec-class: es-rec-class es-pred: pred(e) intensional-universe: IType es-loc: loc(e) fpf-cap: f(x)?z filter: filter(P;l) permutation: permutation(T;L1;L2) list: type List atom: Atom es-base-E: es-base-E(es) token: "$token" quotient: x,y:A//B[x; y] cond-class: [X?Y] so_apply: x[s] or: P  Q eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit union: left + right bool: Id: Id rev_implies: P  Q iff: P  Q RepUR: Error :RepUR,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic,  bag-size: bag-size(bs) es-interface-at: X@i so_lambda: x.t[x] tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) Auto: Error :Auto,  sq_type: SQType(T) suptype: suptype(S; T) sqequal: s ~ t bag-only: only(bs) es-le: e loc e'  es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) BHyp: Error :BHyp,  rev_uimplies: rev_uimplies(P;Q) set_car: |p| rng_car: |r| atom: Atom$n rationals: IdLnk: IdLnk l_disjoint: l_disjoint(T;l1;l2) qle: r  s qless: r < s nequal: a  b  T  l_exists: (xL. P[x]) l_all: (xL.P[x]) grp_lt: a < b set_lt: a <p b set_leq: a  b Try: Error :Try,  cand: A c B ParallelOp: Error :ParallelOp,  Knd: Knd
Lemmas :  is-prior-interface bool_subtype_base assert_elim uiff_wf assert_of_eq_int es-prior-interface-causl bag-only_wf subtype_base_sq es-prior-interface-equal sq_stable__assert assert_functionality_wrt_uiff eq_int_wf bag-size_wf Id_wf eclass-val_wf rev_implies_wf iff_wf assert_wf false_wf true_wf subtype_rel_wf bool_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf es-prior-interface_wf es-interface-top es-interface-subtype_rel2 es-E-interface_wf es-base-E_wf subtype_rel_self top_wf permutation_wf eclass-val_wf2 es-interface-val_wf2 event_ordering_wf squash_wf es-loc_wf intensional-universe_wf es-prior-interface-locl nat_wf es-causl-swellfnd es-rec-class_wf nat_properties ge_wf le_wf es-causl_wf member_wf bag_wf eclass_wf es-prior-interface_wf1 event-ordering+_wf es-E_wf in-eclass_wf ifthenelse_wf event-ordering+_inc es-locl_wf

\mforall{}[Info,T:Type].  \mforall{}[G:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  bag(T)].  \mforall{}[F:es:EO+(Info)
                                                                                                            {}\mrightarrow{}  e':E
                                                                                                            {}\mrightarrow{}  T
                                                                                                            {}\mrightarrow{}  \{e:E|  (e'  <loc  e)\} 
                                                                                                            {}\mrightarrow{}  bag(T)].  \mforall{}[X:EClass(T)].
    X  =  RecClass(first  e    G[es;e]or  next  e  after  e'  with  value  v        F[es;e';v;e]) 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.
                            ((X  es  e)
                            =  if  e  \mmember{}\msubb{}  prior(X)  then  let  e'  =  prior(X)(e)  in  F[es;e';X(e');e]  else  G[es;e]  fi  )


Date html generated: 2011_08_16-PM-05_07_30
Last ObjectModification: 2011_06_20-AM-01_11_11

Home Index