Nuprl Lemma : hdf-until-ap-snd

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[a:A].  ((snd(hdf-until(X;Y)(a))) (snd(X(a))) ∈ bag(B))


Proof




Definitions occuring in Statement :  hdf-until: hdf-until(X;Y) hdf-ap: X(a) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] pi2: snd(t) universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  bag_wf pi2_wf hdf-until-ap hdf-ap_wf iff_weakening_equal bag-null_wf bool_wf eqtt_to_assert assert-bag-null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[a:A].
    ((snd(hdf-until(X;Y)(a)))  =  (snd(X(a))))



Date html generated: 2015_07_17-AM-08_06_09
Last ObjectModification: 2015_02_03-PM-09_46_39

Home Index