Nuprl Lemma : hdf-until-ap-snd
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[a:A].  ((snd(hdf-until(X;Y)(a))) = (snd(X(a))) ∈ bag(B))
Proof
Definitions occuring in Statement : 
hdf-until: hdf-until(X;Y)
, 
hdf-ap: X(a)
, 
hdataflow: hdataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Lemmas : 
bag_wf, 
pi2_wf, 
hdf-until-ap, 
hdf-ap_wf, 
iff_weakening_equal, 
bag-null_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[a:A].
    ((snd(hdf-until(X;Y)(a)))  =  (snd(X(a))))
Date html generated:
2015_07_17-AM-08_06_09
Last ObjectModification:
2015_02_03-PM-09_46_39
Home
Index