Nuprl Lemma : ss-const_wf

[X,Y:SeparationSpace]. ∀[c:Point(Y)].  (ss-const(c) ∈ Point(X ⟶ Y))


Proof




Definitions occuring in Statement :  ss-const: ss-const(c) ss-fun: X ⟶ Y ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  prop: implies:  Q all: x:A. B[x] ss-function: ss-function(X;Y;f) ss-const: ss-const(c) top: Top member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-function_wf ss-eq_wf ss-eq_weakening ss-point_wf ss-fun-point
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination because_Cache dependent_functionElimination lambdaFormation hypothesisEquality lambdaEquality dependent_set_memberEquality hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[c:Point(Y)].    (ss-const(c)  \mmember{}  Point(X  {}\mrightarrow{}  Y))



Date html generated: 2018_07_29-AM-10_12_08
Last ObjectModification: 2018_07_06-PM-02_11_57

Theory : constructive!algebra


Home Index