Nuprl Lemma : orderedpair-snds_functionality
∀a,b:coSet{i:l}.  (seteq(a;b) 
⇒ seteq(snds(a);snds(b)))
Proof
Definitions occuring in Statement : 
orderedpair-snds: snds(pr)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
orderedpair-snds: snds(pr)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
orderedpair-fst_functionality, 
unionset_functionality, 
setmem_functionality, 
iff_wf, 
all_wf, 
orderedpairset_functionality, 
seteq_weakening, 
seteq_functionality, 
setmem-sub-coset, 
setmem_wf, 
orderedpair-fst_wf, 
orderedpairset_wf, 
unionset_wf, 
sub-set_wf, 
co-seteq-iff, 
coSet_wf, 
seteq_wf
Rules used in proof : 
andLevelFunctionality, 
productEquality, 
instantiate, 
because_Cache, 
impliesFunctionality, 
independent_pairFormation, 
allFunctionality, 
addLevel, 
independent_functionElimination, 
productElimination, 
cumulativity, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,b:coSet\{i:l\}.    (seteq(a;b)  {}\mRightarrow{}  seteq(snds(a);snds(b)))
Date html generated:
2018_07_29-AM-10_02_19
Last ObjectModification:
2018_07_18-PM-03_16_05
Theory : constructive!set!theory
Home
Index