Nuprl Lemma : name-morph-one-one

[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[x,y:nameset(I)].
  (x y ∈ Cname) supposing (((f x) (f y) ∈ Cname) and (↑isname(f y)) and (↑isname(f x)))


Proof




Definitions occuring in Statement :  name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) coordinate_name: Cname list: List assert: b uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} nameset: nameset(L) inject: Inj(A;B;f) all: x:A. B[x] implies:  Q coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) name-morph-domain: name-morph-domain(f;I)
Lemmas referenced :  assert-isname equal_wf coordinate_name_wf nameset_wf assert_wf isname_wf name-morph_wf list_wf name-morph-domain_subtype name-morph-domain-inject ext-eq_inversion name-morph-domain_wf subtype_rel_weakening subtype_base_sq set_subtype_base le_wf int_subtype_base nameset_subtype_base filter_wf5 l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality setElimination rename productElimination independent_isectElimination hypothesis because_Cache equalityTransitivity equalitySymmetry lambdaEquality sqequalRule dependent_functionElimination dependent_set_memberEquality setEquality independent_functionElimination instantiate cumulativity intEquality natural_numberEquality

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[x,y:nameset(I)].
    (x  =  y)  supposing  (((f  x)  =  (f  y))  and  (\muparrow{}isname(f  y))  and  (\muparrow{}isname(f  x)))



Date html generated: 2016_05_20-AM-09_30_32
Last ObjectModification: 2015_12_28-PM-04_46_48

Theory : cubical!sets


Home Index