Nuprl Lemma : case-term-0

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[u:Top]. ∀[v:{Gamma ⊢ _:A}].
  Gamma ⊢ (u ∨ v)=v:A supposing phi 0(𝔽) ∈ {Gamma ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B same-cubical-term: X ⊢ u=v:A guard: {T} and: P ∧ Q squash: T true: True prop: iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  case-term-equal-right face-1_wf thin-context-subset face-or_wf context-subset-term-subtype face-0_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j istype-top cubical-type_wf face-type_wf cubical_set_wf empty-context-subset-lemma3 subtype_rel-equal context-subset_wf subset-cubical-term face-and_wf face-term-implies-subset face-term-and-implies1 sub_cubical_set_wf squash_wf true_wf iff_weakening_equal context-1-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache equalityTransitivity equalitySymmetry applyEquality sqequalRule independent_isectElimination axiomEquality equalityIstype inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate Error :memTop,  dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality setElimination rename productElimination lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:Top].  \mforall{}[v:\{Gamma  \mvdash{}  \_:A\}].
    Gamma  \mvdash{}  (u  \mvee{}  v)=v:A  supposing  phi  =  0(\mBbbF{})



Date html generated: 2020_05_20-PM-04_14_50
Last ObjectModification: 2020_04_10-AM-04_44_16

Theory : cubical!type!theory


Home Index