Nuprl Lemma : case-type-0
ā[Gamma:jā¢]. ā[phi:{Gamma ā¢ _:š½}].
ā[A:Top Ć Top]. ā[B:{Gamma ā¢ _}]. Gamma ā¢ (if phi then A else B) = B supposing phi = 0(š½) ā {Gamma ā¢ _:š½}
Proof
Definitions occuring in Statement :
case-type: (if phi then A else B)
,
same-cubical-type: Gamma ā¢ A = B
,
face-0: 0(š½)
,
face-type: š½
,
cubical-term: {X ā¢ _:A}
,
cubical-type: {X ā¢ _}
,
cubical_set: CubicalSet
,
uimplies: b supposing a
,
uall: ā[x:A]. B[x]
,
top: Top
,
product: x:A Ć B[x]
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
member: t ā T
,
uimplies: b supposing a
,
squash: āT
,
true: True
,
subtype_rel: A ār B
,
cubical-type: {X ā¢ _}
,
so_lambda: Ī»2x.t[x]
,
so_apply: x[s]
,
all: āx:A. B[x]
,
same-cubical-type: Gamma ā¢ A = B
,
guard: {T}
,
iff: P
āā Q
,
and: P ā§ Q
,
rev_implies: P
ā Q
,
implies: P
ā Q
Lemmas referenced :
case-type-same2,
cubical-type_wf,
istype-top,
face-0_wf,
cubical-term_wf,
face-type_wf,
cubical_set_wf,
empty-context-subset-lemma6,
context-subset_wf,
face-1_wf,
thin-context-subset,
subtype_rel_product,
fset_wf,
nat_wf,
I_cube_wf,
names-hom_wf,
cube-set-restriction_wf,
istype-universe,
top_wf,
subset-cubical-type,
face-and_wf,
face-term-implies-subset,
face-term-implies_wf,
iff_weakening_equal,
face-term-and-implies1,
context-1-subset
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
universeIsType,
productIsType,
because_Cache,
equalityIstype,
inhabitedIsType,
instantiate,
independent_isectElimination,
applyEquality,
lambdaEquality_alt,
imageElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
hyp_replacement,
setElimination,
rename,
functionEquality,
cumulativity,
universeEquality,
functionIsType,
Error :memTop,
lambdaFormation_alt,
productElimination,
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[phi:\{Gamma \mvdash{} \_:\mBbbF{}\}].
\mforall{}[A:Top \mtimes{} Top]. \mforall{}[B:\{Gamma \mvdash{} \_\}]. Gamma \mvdash{} (if phi then A else B) = B supposing phi = 0(\mBbbF{})
Date html generated:
2020_05_20-PM-04_14_35
Last ObjectModification:
2020_04_10-AM-04_43_35
Theory : cubical!type!theory
Home
Index