Nuprl Lemma : csm-ap-term-meaning_wf

[X,Y:⊢''']. ∀[s:cube_set_map{i''':l}(X; Y)]. ∀[t:cttTerm(Y)].  ((t)s ∈ cttTerm(X))


Proof




Definitions occuring in Statement :  csm-ap-term-meaning: (t)s ctt-term-meaning: cttTerm(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-term-meaning: cttTerm(X) csm-ap-term-meaning: (t)s spreadn: spread3 all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} ctt-level-type: {X ⊢lvl _} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop:
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties csm-ap-type_wf csm-ap-term_wf istype-cubical-term int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf cubical-type_wf ctt-term-meaning_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality_alt hypothesisEquality introduction extract_by_obid dependent_functionElimination setElimination rename hypothesis unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality hypothesis_subsumption approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination productIsType inhabitedIsType

Latex:
\mforall{}[X,Y:\mvdash{}'''].  \mforall{}[s:cube\_set\_map\{i''':l\}(X;  Y)].  \mforall{}[t:cttTerm(Y)].    ((t)s  \mmember{}  cttTerm(X))



Date html generated: 2020_05_20-PM-07_55_04
Last ObjectModification: 2020_05_04-AM-10_22_25

Theory : cubical!type!theory


Home Index