Nuprl Lemma : discrete-pathtype-uniform

[T:Type]. ∀[X,Z:j⊢]. ∀[s:Z j⟶ X]. ∀[pth:{Z ⊢ _:(Path(discr(T)))s}].
  (pth refl(pth 0(𝕀)) ∈ {Z ⊢ _:(Path(discr(T)))s})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubical-path-app: pth r pathtype: Path(A) interval-0: 0(𝕀) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a squash: T all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  discrete-pathtype cubical_set_cumulativity-i-j subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf pathtype_wf discrete-cubical-type_wf equal_wf cubical-type_wf csm-pathtype iff_weakening_equal csm-discrete-cubical-type squash_wf true_wf subtype_rel_self cubical-term_wf cube_set_map_wf cubical_set_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality applyEquality hypothesis sqequalRule because_Cache independent_isectElimination lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination Error :memTop,  universeIsType universeEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[T:Type].  \mforall{}[X,Z:j\mvdash{}].  \mforall{}[s:Z  j{}\mrightarrow{}  X].  \mforall{}[pth:\{Z  \mvdash{}  \_:(Path(discr(T)))s\}].    (pth  =  refl(pth  @  0(\mBbbI{})))



Date html generated: 2020_05_20-PM-03_36_39
Last ObjectModification: 2020_04_06-PM-07_02_19

Theory : cubical!type!theory


Home Index