Nuprl Lemma : equiv-path1_wf

[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(A;B)}].  G.𝕀 ⊢ equiv-path1(G;A;B;f)


Proof




Definitions occuring in Statement :  equiv-path1: equiv-path1(G;A;B;f) cubical-equiv: Equiv(T;A) interval-type: 𝕀 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv-path1: equiv-path1(G;A;B;f) cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) guard: {T}
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval subset-cubical-type context-subset_wf context-subset-is-subset istype-cubical-term face-type_wf glue-type_wf face-or_wf face-zero_wf cc-snd_wf face-one_wf case-type_wf same-cubical-type-zero-and-one face-0_wf equiv-fun_wf cubical-equiv-by-cases_wf cubical-equiv_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality because_Cache independent_isectElimination sqequalRule dependent_functionElimination equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].    G.\mBbbI{}  \mvdash{}  equiv-path1(G;A;B;f)



Date html generated: 2020_05_20-PM-07_26_17
Last ObjectModification: 2020_04_25-PM-10_11_45

Theory : cubical!type!theory


Home Index