Nuprl Lemma : face-presheaf-point-subtype

[I:fset(ℕ)]. (𝔽(I) ⊆Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  face-presheaf: 𝔽 face_lattice: face_lattice(I) I_cube: A(I) lattice-point: Point(l) fset: fset(T) nat: subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T I_cube: A(I) functor-ob: functor-ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_self fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality unionEquality hypothesisEquality hypothesis because_Cache productEquality lambdaEquality axiomEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  (\mBbbF{}(I)  \msubseteq{}r  Point(face\_lattice(I)))



Date html generated: 2016_05_18-PM-00_16_18
Last ObjectModification: 2015_12_28-PM-03_00_07

Theory : cubical!type!theory


Home Index