Nuprl Lemma : fiber-member-transprt-const-fiber-comp

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[pr:{X ⊢ _:Fiber(w;a)}]. ∀[cT:X +⊢ Compositon(T)].
[cA:X +⊢ Compositon(A)].
  (fiber-member(transprt-const(X;fiber-comp(X;T;A;w;a;cT;cA);pr)) transprt-const(X;cT;pr.1) ∈ {X ⊢ _:T})


Proof




Definitions occuring in Statement :  fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) transprt-const: transprt-const(G;cA;a) composition-structure: Gamma ⊢ Compositon(A) fiber-member: fiber-member(p) cubical-fiber: Fiber(w;a) cubical-fst: p.1 cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) fiber-member: fiber-member(p) member: t ∈ T subtype_rel: A ⊆B cubical-fiber: Fiber(w;a) all: x:A. B[x] and: P ∧ Q uimplies: supposing a
Lemmas referenced :  fst-transprt-const-sigma path-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf csm-ap-term_wf path_comp_wf csm-comp-structure_wf composition-structure_wf istype-cubical-term cubical-fiber_wf cubical-fun_wf cubical-type_wf cubical_set_wf cc-snd_wf csm-cubical-fun cubical-term-eqcd cubical-app_wf_fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry universeIsType dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination independent_isectElimination lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[pr:\{X  \mvdash{}  \_:Fiber(w;a)\}].
\mforall{}[cT:X  +\mvdash{}  Compositon(T)].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].
    (fiber-member(transprt-const(X;fiber-comp(X;T;A;w;a;cT;cA);pr))  =  transprt-const(X;cT;pr.1))



Date html generated: 2020_05_20-PM-05_13_49
Last ObjectModification: 2020_04_18-PM-00_33_23

Theory : cubical!type!theory


Home Index