Nuprl Lemma : fill-type-down-1

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma ⊢ _:(A)[1(𝕀)]}].
  ((app(fill-type-down(Gamma;A;cA); (u)p))[1(𝕀)] u ∈ {Gamma ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  fill-type-down: fill-type-down(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-type: 𝕀 cubical-app: app(w; u) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) rev-type-line: (A)- uimplies: supposing a squash: T prop: true: True fill-type-down: fill-type-down(Gamma;A;cA) all: x:A. B[x] cubical-type: {X ⊢ _} interval-rev: 1-(r) csm-adjoin: (s;u) interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s interval-1: 1(𝕀) csm-id: 1(X) csm-ap: (s)x cubical-term-at: u(a) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  fill-type-up-0 rev-type-line_wf csm-adjoin_wf cubical_set_cumulativity-i-j cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-interval-type interval-rev_wf cc-snd_wf csm-composition_wf subtype_rel_self composition-op_wf cubical-type-cumulativity2 subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf csm-id-adjoin_wf-interval-0 rev-type-line-0 csm-id-adjoin_wf-interval-1 cubical-term_wf squash_wf true_wf cubical-type_wf cubical_set_wf csm-cubical-app csm_id_adjoin_fst_term_lemma dma-neg-dM1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality sqequalRule because_Cache Error :memTop,  equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt imageElimination universeIsType natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination hyp_replacement setElimination rename productElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[u:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
    ((app(fill-type-down(Gamma;A;cA);  (u)p))[1(\mBbbI{})]  =  u)



Date html generated: 2020_05_20-PM-04_55_38
Last ObjectModification: 2020_04_12-AM-08_42_39

Theory : cubical!type!theory


Home Index