Nuprl Lemma : fill-type-up-0
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma ⊢ _:(A)[0(𝕀)]}].
  ((app(fill-type-up(Gamma;A;cA); (u)p))[0(𝕀)] = u ∈ {Gamma ⊢ _:(A)[0(𝕀)]})
Proof
Definitions occuring in Statement : 
fill-type-up: fill-type-up(Gamma;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-app: app(w; u)
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
csm-ap-term: (t)s
, 
fill-type-up: fill-type-up(Gamma;A;cA)
, 
cubical-app: app(w; u)
, 
cubical-lambda: (λb)
, 
swap-interval: swap-interval(G;A)
, 
csm-swap: csm-swap(G;A;B)
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
cc-fst: p
, 
cc-adjoin-cube: (v;u)
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
csm+: tau+
, 
csm-adjoin: (s;u)
, 
csm-id: 1(X)
, 
csm-comp: G o F
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
compose: f o g
, 
cube-context-adjoin: X.A
, 
cubical-term-at: u(a)
, 
interval-type: 𝕀
, 
constant-cubical-type: (X)
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
cc-fst_wf, 
cubical-term_wf, 
cubical-type-cumulativity2, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
fill-type-up_wf, 
cubical-app_wf_fun, 
csm-ap-term_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
cube_set_restriction_pair_lemma, 
interval-type-ap-morph, 
dM-lift-0-sq, 
cubical-term-at_wf, 
filling_term_0, 
face-0_wf, 
csm+_wf_interval, 
csm-face-0, 
context-subset-term-0, 
constrained-cubical-term-0, 
csm+_wf, 
csm-id-adjoin_wf, 
csm-interval-type, 
interval-0_wf, 
cc-snd_wf, 
csm-composition_wf, 
cc-adjoin-cube_wf, 
cube-set-restriction_wf, 
nh-id_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
cube-set-restriction-id, 
csm-ap-term-at, 
cubical_type_at_pair_lemma, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
universeIsType, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
functionExtensionality, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
Error :memTop, 
applyLambdaEquality, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[u:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].
    ((app(fill-type-up(Gamma;A;cA);  (u)p))[0(\mBbbI{})]  =  u)
Date html generated:
2020_05_20-PM-04_54_50
Last ObjectModification:
2020_04_13-PM-02_56_43
Theory : cubical!type!theory
Home
Index