Nuprl Lemma : fill-type-up-0

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma ⊢ _:(A)[0(𝕀)]}].
  ((app(fill-type-up(Gamma;A;cA); (u)p))[0(𝕀)] u ∈ {Gamma ⊢ _:(A)[0(𝕀)]})


Proof




Definitions occuring in Statement :  fill-type-up: fill-type-up(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q uimplies: supposing a csm-ap-term: (t)s fill-type-up: fill-type-up(Gamma;A;cA) cubical-app: app(w; u) cubical-lambda: b) swap-interval: swap-interval(G;A) csm-swap: csm-swap(G;A;B) cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap: (s)x cc-fst: p cc-adjoin-cube: (v;u) cc-snd: q csm-ap-type: (AF)s csm+: tau+ csm-adjoin: (s;u) csm-id: 1(X) csm-comp: F pi1: fst(t) pi2: snd(t) compose: g cube-context-adjoin: X.A cubical-term-at: u(a) interval-type: 𝕀 constant-cubical-type: (X) squash: T true: True prop:
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cc-fst_wf cubical-term_wf cubical-type-cumulativity2 composition-op_wf cubical-type_wf cubical_set_wf fill-type-up_wf cubical-app_wf_fun csm-ap-term_wf I_cube_wf fset_wf nat_wf cubical-term-equal cube_set_restriction_pair_lemma interval-type-ap-morph dM-lift-0-sq cubical-term-at_wf filling_term_0 face-0_wf csm+_wf_interval csm-face-0 context-subset-term-0 constrained-cubical-term-0 csm+_wf csm-id-adjoin_wf csm-interval-type interval-0_wf cc-snd_wf csm-composition_wf cc-adjoin-cube_wf cube-set-restriction_wf nh-id_wf subtype_rel-equal cubical-type-at_wf cube-set-restriction-id csm-ap-term-at cubical_type_at_pair_lemma squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality because_Cache sqequalRule universeIsType inhabitedIsType lambdaFormation_alt equalityTransitivity equalitySymmetry equalityIstype dependent_functionElimination independent_functionElimination functionExtensionality independent_isectElimination setElimination rename productElimination Error :memTop,  applyLambdaEquality lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[u:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].
    ((app(fill-type-up(Gamma;A;cA);  (u)p))[0(\mBbbI{})]  =  u)



Date html generated: 2020_05_20-PM-04_54_50
Last ObjectModification: 2020_04_13-PM-02_56_43

Theory : cubical!type!theory


Home Index