Nuprl Lemma : name-morph-satisfies-fl0
∀[I,J:fset(ℕ)]. ∀[i:names(I)]. ∀[f:J ⟶ I].  uiff(((i=0) f) = 1;(f i) = 0 ∈ Point(dM(J)))
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1
, 
fl0: (x=0)
, 
names-hom: I ⟶ J
, 
dM0: 0
, 
dM: dM(I)
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
name-morph-satisfies: (psi f) = 1
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
names-hom: I ⟶ J
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_wf, 
fset_wf, 
names_wf, 
names-hom_wf, 
dM0_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
dM_wf, 
lattice-point_wf, 
equal_wf, 
fl0_wf, 
name-morph-satisfies_wf, 
fl-morph-fl0-is-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
isect_memberFormation, 
introduction, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:names(I)].  \mforall{}[f:J  {}\mrightarrow{}  I].    uiff(((i=0)  f)  =  1;(f  i)  =  0)
Date html generated:
2016_05_18-PM-00_20_19
Last ObjectModification:
2016_01_26-PM-03_12_09
Theory : cubical!type!theory
Home
Index