Nuprl Lemma : name-morph-satisfies-fl0

[I,J:fset(ℕ)]. ∀[i:names(I)]. ∀[f:J ⟶ I].  uiff(((i=0) f) 1;(f i) 0 ∈ Point(dM(J)))


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 fl0: (x=0) names-hom: I ⟶ J dM0: 0 dM: dM(I) names: names(I) lattice-point: Point(l) fset: fset(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  name-morph-satisfies: (psi f) 1 uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] names-hom: I ⟶ J uiff: uiff(P;Q)
Lemmas referenced :  nat_wf fset_wf names_wf names-hom_wf dM0_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf equal_wf fl0_wf name-morph-satisfies_wf fl-morph-fl0-is-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache isect_memberFormation introduction productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:names(I)].  \mforall{}[f:J  {}\mrightarrow{}  I].    uiff(((i=0)  f)  =  1;(f  i)  =  0)



Date html generated: 2016_05_18-PM-00_20_19
Last ObjectModification: 2016_01_26-PM-03_12_09

Theory : cubical!type!theory


Home Index