Nuprl Lemma : eu-congruent-preserves-between
∀e:EuclideanPlane. ∀[a,b,c,a',b',c':Point].  (a'_b'_c') supposing (bc=b'c' and ac=a'c' and ab=a'b' and a_b_c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
stable: Stable{P}
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
false: False
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
stable__eu-between-eq, 
not_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
eu-point_wf, 
euclidean-plane_wf, 
equal_wf, 
eu-congruence-identity-sym, 
eu-between-eq-trivial-left, 
eu-congruent-between-exists, 
eu-congruent-refl, 
eu-congruent-iff-length, 
eu-length-flip, 
eu-inner-five-segment
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
productElimination, 
equalityTransitivity
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,a',b',c':Point].    (a'\_b'\_c')  supposing  (bc=b'c'  and  ac=a'c'  and  ab=a'b'  and  a\_b\_c)
Date html generated:
2016_10_26-AM-07_42_36
Last ObjectModification:
2016_07_12-AM-08_08_56
Theory : euclidean!geometry
Home
Index