Nuprl Lemma : eu-congruent-between-exists
∀e:EuclideanPlane. ∀a,b,c,a',c':Point.
  (∃b':Point. (a'_b'_c' ∧ ab=a'b' ∧ bc=b'c')) supposing (a_b_c and ac=a'c' and (¬(a = b ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
eu-point_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
not_wf, 
equal_wf, 
euclidean-plane_wf, 
eu-congruence-identity, 
false_wf, 
eu-between-eq-same, 
eu-congruence-identity-sym, 
eu-extend-exists, 
eu-construction-unicity, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange3, 
eu-between-eq-exchange4, 
eu-three-segment, 
eu-congruent-iff-length, 
eu-between-eq-outer-trans, 
eu-congruence-identity3, 
and_wf, 
eu-mk-seg_wf, 
eu-segment_wf, 
eu-length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
equalityTransitivity, 
universeEquality, 
dependent_set_memberEquality, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
applyEquality, 
setEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',c':Point.
    (\mexists{}b':Point.  (a'\_b'\_c'  \mwedge{}  ab=a'b'  \mwedge{}  bc=b'c'))  supposing  (a\_b\_c  and  ac=a'c'  and  (\mneg{}(a  =  b)))
Date html generated:
2016_10_26-AM-07_42_31
Last ObjectModification:
2016_07_12-AM-08_09_23
Theory : euclidean!geometry
Home
Index