Nuprl Lemma : eu-le_transitivity
∀e:EuclideanPlane. ∀[p,q,r:{p:Point| O_X_p} ].  (p ≤ r) supposing (q ≤ r and p ≤ q)
Proof
Definitions occuring in Statement : 
eu-le: p ≤ q
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
eu-le: p ≤ q
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
euclidean-plane_wf, 
eu-O_wf, 
eu-between-eq_wf, 
eu-point_wf, 
set_wf, 
eu-le_wf, 
eu-between-eq-exchange4, 
eu-between-eq-exchange3, 
eu-between-eq-inner-trans, 
eu-between-eq-symmetry, 
eu-X_wf, 
sq_stable__eu-between-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
introduction, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p,q,r:\{p:Point|  O\_X\_p\}  ].    (p  \mleq{}  r)  supposing  (q  \mleq{}  r  and  p  \mleq{}  q)
Date html generated:
2016_05_18-AM-06_37_23
Last ObjectModification:
2016_01_16-PM-10_30_30
Theory : euclidean!geometry
Home
Index