Nuprl Lemma : eu-not-equal-OXY
∀[e:EuclideanStructure]. ((¬(O = X ∈ Point)) ∧ (¬(O = Y ∈ Point)) ∧ (¬(X = Y ∈ Point)))
Proof
Definitions occuring in Statement : 
eu-Y: Y, 
eu-X: X, 
eu-O: O, 
eu-point: Point, 
euclidean-structure: EuclideanStructure, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
eu-not-colinear-OXY, 
equal_wf, 
eu-point_wf, 
eu-O_wf, 
eu-X_wf, 
eu-colinear_wf, 
eu-Y_wf, 
euclidean-structure_wf, 
not_wf, 
member_wf, 
eu-between_wf, 
eu-colinear-def
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
productElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
productEquality
Latex:
\mforall{}[e:EuclideanStructure].  ((\mneg{}(O  =  X))  \mwedge{}  (\mneg{}(O  =  Y))  \mwedge{}  (\mneg{}(X  =  Y)))
Date html generated:
2016_10_26-AM-07_40_40
Last ObjectModification:
2016_07_12-AM-08_06_42
Theory : euclidean!geometry
Home
Index