Nuprl Lemma : eu-not-equal-OXY

[e:EuclideanStructure]. ((¬(O X ∈ Point)) ∧ (O Y ∈ Point)) ∧ (X Y ∈ Point)))


Proof




Definitions occuring in Statement :  eu-Y: Y eu-X: X eu-O: O eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q not: ¬A implies:  Q false: False prop: all: x:A. B[x] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eu-not-colinear-OXY equal_wf eu-point_wf eu-O_wf eu-X_wf eu-colinear_wf eu-Y_wf euclidean-structure_wf not_wf member_wf eu-between_wf eu-colinear-def
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation lambdaFormation productElimination independent_functionElimination voidElimination dependent_functionElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality,  sqequalRule because_Cache equalityTransitivity productEquality

Latex:
\mforall{}[e:EuclideanStructure].  ((\mneg{}(O  =  X))  \mwedge{}  (\mneg{}(O  =  Y))  \mwedge{}  (\mneg{}(X  =  Y)))



Date html generated: 2016_10_26-AM-07_40_40
Last ObjectModification: 2016_07_12-AM-08_06_42

Theory : euclidean!geometry


Home Index