Nuprl Lemma : eu-proper-extend-exists
∀e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| ¬(q = a ∈ Point)} . ∀b:Point. ∀c:{c:Point| ¬(b = c ∈ Point)} .
  ∃x:Point. (q-a-x ∧ ax=bc)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between: a-b-c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
eu-extend-exists, 
eu-between_wf, 
eu-congruent_wf, 
set_wf, 
eu-point_wf, 
not_wf, 
equal_wf, 
euclidean-plane_wf, 
stable__eu-between, 
eu-between-eq-def, 
sq_stable__eu-between, 
eu-congruence-identity-sym
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
equalityTransitivity
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  \mneg{}(q  =  a)\}  .  \mforall{}b:Point.  \mforall{}c:\{c:Point|  \mneg{}(b  =  c)\}  .
    \mexists{}x:Point.  (q-a-x  \mwedge{}  ax=bc)
Date html generated:
2016_10_26-AM-07_41_46
Last ObjectModification:
2016_07_12-AM-08_08_02
Theory : euclidean!geometry
Home
Index