Nuprl Lemma : eu-proper-extend-exists

e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| ¬(q a ∈ Point)} . ∀b:Point. ∀c:{c:Point| ¬(b c ∈ Point)} .
  ∃x:Point. (q-a-x ∧ ax=bc)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between: a-b-c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] stable: Stable{P} uimplies: supposing a not: ¬A implies:  Q iff: ⇐⇒ Q false: False sq_stable: SqStable(P) squash: T
Lemmas referenced :  eu-extend-exists eu-between_wf eu-congruent_wf set_wf eu-point_wf not_wf equal_wf euclidean-plane_wf stable__eu-between eu-between-eq-def sq_stable__eu-between eu-congruence-identity-sym
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename productElimination dependent_pairFormation independent_pairFormation productEquality isectElimination because_Cache sqequalRule lambdaEquality independent_isectElimination independent_functionElimination voidElimination imageMemberEquality baseClosed imageElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality,  equalityTransitivity

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  \mneg{}(q  =  a)\}  .  \mforall{}b:Point.  \mforall{}c:\{c:Point|  \mneg{}(b  =  c)\}  .
    \mexists{}x:Point.  (q-a-x  \mwedge{}  ax=bc)



Date html generated: 2016_10_26-AM-07_41_46
Last ObjectModification: 2016_07_12-AM-08_08_02

Theory : euclidean!geometry


Home Index