Nuprl Lemma : line-circle-continuity1
∀e:EuclideanPlane. ∀a,b,p:Point. ∀q:{q:Point| ¬(q = p ∈ Point)} .
  ((∃x:{x:Point| a_x_b} . ∃y:{y:Point| a_b_y} . (ap=ax ∧ aq=ay)) 
⇒ (∃y,z:Point. (ay=ab ∧ az=ab ∧ z_p_q ∧ p_y_q)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
euclidean-axioms: euclidean-axioms(e)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
let: let, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
sq_stable__eu-between-eq, 
sq_stable__eu-congruent, 
sq_stable__and, 
euclidean-plane_wf, 
set_wf, 
exists_wf, 
eu-between-eq_wf, 
pi2_wf, 
top_wf, 
subtype_rel_product, 
pi1_wf_top, 
not_wf, 
and_wf, 
eu-point_wf, 
equal_wf, 
eu-congruent_wf, 
eu-line-circle_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
dependent_set_memberEquality, 
hypothesis, 
setElimination, 
rename, 
independent_pairFormation, 
independent_functionElimination, 
voidElimination, 
productEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
setEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isectEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,p:Point.  \mforall{}q:\{q:Point|  \mneg{}(q  =  p)\}  .
    ((\mexists{}x:\{x:Point|  a\_x\_b\}  .  \mexists{}y:\{y:Point|  a\_b\_y\}  .  (ap=ax  \mwedge{}  aq=ay))
    {}\mRightarrow{}  (\mexists{}y,z:Point.  (ay=ab  \mwedge{}  az=ab  \mwedge{}  z\_p\_q  \mwedge{}  p\_y\_q)))
Date html generated:
2016_05_18-AM-06_41_35
Last ObjectModification:
2016_01_16-PM-10_29_31
Theory : euclidean!geometry
Home
Index