Nuprl Lemma : Dbet-iff-between

e:EuclideanPlane. ∀a,b,c:Point.  ((∀A,B,C:Point.  (A BC  |AC| < |AB| |BC|))  (Dbet(e;a;b;c) ⇐⇒ a_b_c))


Proof




Definitions occuring in Statement :  dist-bet: Dbet(g;a;b;c) geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-between: a_b_c geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane dist-bet: Dbet(g;a;b;c) not: ¬A squash: T true: True false: False
Lemmas referenced :  dist-bet_wf geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf geo-lt_wf geo-length_wf geo-mk-seg_wf geo-add-length_wf geo-point_wf Dbet-to-between dist_wf geo-add-length-between squash_wf true_wf geo-length-type_wf basic-geometry_wf subtype_rel_self iff_weakening_equal geo-lt-irrefl dist-iff-lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule functionIsType inhabitedIsType because_Cache setElimination rename dependent_functionElimination independent_functionElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination voidElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    ((\mforall{}A,B,C:Point.    (A  \#  BC  {}\mRightarrow{}  |AC|  <  |AB|  +  |BC|))  {}\mRightarrow{}  (Dbet(e;a;b;c)  \mLeftarrow{}{}\mRightarrow{}  a\_b\_c))



Date html generated: 2019_10_16-PM-02_54_05
Last ObjectModification: 2018_12_05-PM-03_05_24

Theory : euclidean!plane!geometry


Home Index