Nuprl Lemma : Euclid-Prop5
∀e:EuclideanPlane. ∀a,b,c,x,y:Point.  (((ab ≅ ac ∧ a # bc) ∧ a-b-x ∧ a-c-y) 
⇒ (abc ≅a acb ∧ xbc ≅a ycb))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
geo-tri: Triangle(a;b;c)
, 
geo-isosceles: ISOΔ(a;b;c)
Lemmas referenced : 
geo-point_wf, 
geo-strict-between_wf, 
geo-lsep_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-congruent_wf, 
geo-sep-sym, 
lsep-implies-sep, 
Euclid-Prop5_1, 
Euclid-Prop5_2
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
hypothesis, 
independent_pairFormation, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.
    (((ab  \00D0  ac  \mwedge{}  a  \#  bc)  \mwedge{}  a-b-x  \mwedge{}  a-c-y)  {}\mRightarrow{}  (abc  \00D0\msuba{}  acb  \mwedge{}  xbc  \00D0\msuba{}  ycb))
Date html generated:
2017_10_02-PM-06_56_52
Last ObjectModification:
2017_08_10-PM-08_39_44
Theory : euclidean!plane!geometry
Home
Index