Nuprl Lemma : Euclid-Prop5

e:EuclideanPlane. ∀a,b,c,x,y:Point.  (((ab ≅ ac ∧ bc) ∧ a-b-x ∧ a-c-y)  (abc ≅a acb ∧ xbc ≅a ycb))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x] geo-tri: Triangle(a;b;c) geo-isosceles: ISOΔ(a;b;c)
Lemmas referenced :  geo-point_wf geo-strict-between_wf geo-lsep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-congruent_wf geo-sep-sym lsep-implies-sep Euclid-Prop5_1 Euclid-Prop5_2
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality hypothesisEquality isectElimination extract_by_obid introduction productEquality hypothesis independent_pairFormation cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination dependent_functionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.
    (((ab  \00D0  ac  \mwedge{}  a  \#  bc)  \mwedge{}  a-b-x  \mwedge{}  a-c-y)  {}\mRightarrow{}  (abc  \00D0\msuba{}  acb  \mwedge{}  xbc  \00D0\msuba{}  ycb))



Date html generated: 2017_10_02-PM-06_56_52
Last ObjectModification: 2017_08_10-PM-08_39_44

Theory : euclidean!plane!geometry


Home Index