Nuprl Lemma : Euclid-Prop5_2

e:EuclideanPlane. ∀a,b,c,x,y:Point.  ((ISOΔ(a;b;c) ∧ a-b-x ∧ a-c-y)  xbc ≅a ycb)


Proof




Definitions occuring in Statement :  geo-isosceles: ISOΔ(a;b;c) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: sq_exists: x:A [B[x]] euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T basic-geometry: BasicGeometry exists: x:A. B[x] basic-geometry-: BasicGeometry- geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b true: True select: L[n] cons: [a b] subtract: m cand: c∧ B geo-isosceles: ISOΔ(a;b;c) uiff: uiff(P;Q) geo-tri: Triangle(a;b;c) geo-cong-tri: Cong3(abc,a'b'c') iff: ⇐⇒ Q
Lemmas referenced :  segment-density-strict geo-strict-between-sep3 euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf sq_stable__geo-strict-between geo-proper-extend-exists geo-strict-between-sep2 geo-isosceles_wf geo-strict-between_wf geo-point_wf geo-strict-between-sym geo-strict-between-trans geo-strict-between-trans2 colinear-lsep geo-sep-sym geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf colinear-lsep-cycle lsep-all-sym geo-strict-between-sep1 geo-congruent-iff-length geo-add-length-between geo-strict-between-implies-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf Euclid-Prop4 lsep-implies-sep euclidean-plane-axioms geo-congruent-flip geo-between-out geo-out_weakening geo-eq_weakening cong-angle-out-aux2_1 geo-congruent-symmetry geo-length-flip geo-out-iff-between1 geo-between-outer-trans geo-between-symmetry geo-out_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination sqequalRule because_Cache independent_functionElimination dependent_set_memberEquality setElimination rename imageMemberEquality baseClosed imageElimination productEquality isect_memberEquality voidElimination voidEquality natural_numberEquality independent_pairFormation lambdaEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.    ((ISO\mDelta{}(a;b;c)  \mwedge{}  a-b-x  \mwedge{}  a-c-y)  {}\mRightarrow{}  xbc  \mcong{}\msuba{}  ycb)



Date html generated: 2018_05_22-PM-00_08_20
Last ObjectModification: 2018_05_11-PM-01_17_42

Theory : euclidean!plane!geometry


Home Index