Nuprl Lemma : cong-angle-out-aux2_1

g:BasicGeometry. ∀a,b,c,d,e,f,a',c',d',f':Point.
  (a'c' ≅ d'f'  out(b a'a)  out(b c'c)  out(e d'd)  out(e f'f)  ba' ≅ ed'  bc' ≅ ef'  abc ≅a def)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q cand: c∧ B member: t ∈ T basic-geometry: BasicGeometry geo-out: out(p ab) exists: x:A. B[x] subtype_rel: A ⊆B euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-eq: a ≡ b
Lemmas referenced :  geo-sep-sym geo-proper-extend-exists geo-strict-between-implies-between subtype_rel_self basic-geometry-_wf geo-between-symmetry geo-congruent-iff-length geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf geo-add-length-comm geo-between_wf geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-out_wf geo-point_wf oriented-colinear-append euclidean-plane-subtype-oriented oriented-plane_wf cons_wf nil_wf cons_member l_member_wf geo-sep_wf geo-colinear-is-colinear-set geo-out-colinear geo-strict-between-implies-colinear list_ind_cons_lemma istype-void list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-colinear-cases stable__geo-congruent geo-eq_wf geo-strict-between_wf geo-between-out-implies-out geo-out_inversion or_comm geo-cong-preserves-bet-out geo-be-end-eq geo-between-trivial geo-between_functionality geo-eq_weakening geo-colinear_functionality geo-congruent_functionality geo-congruent-refl geo-strict-between-sep1 geo-cong-preserves-strict-bet-out geo-inner-three-segment geo-length-flip geo-five-segment geo-strict-between-sym geo-between-inner-trans geo-between-exchange3 geo-between-exchange4 geo-between-outer-trans geo-strict-between-sep3 geo-inner-five-segment geo-not-bet-and-out geo-out_transitivity geo-between-out geo-between-implies-colinear
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination hypothesis because_Cache rename dependent_pairFormation_alt applyEquality sqequalRule instantiate isectElimination independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productIsType inlFormation_alt inrFormation_alt equalityIstype isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt unionElimination approximateComputation setElimination functionIsType

Latex:
\mforall{}g:BasicGeometry.  \mforall{}a,b,c,d,e,f,a',c',d',f':Point.
    (a'c'  \mcong{}  d'f'
    {}\mRightarrow{}  out(b  a'a)
    {}\mRightarrow{}  out(b  c'c)
    {}\mRightarrow{}  out(e  d'd)
    {}\mRightarrow{}  out(e  f'f)
    {}\mRightarrow{}  ba'  \mcong{}  ed'
    {}\mRightarrow{}  bc'  \mcong{}  ef'
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  def)



Date html generated: 2019_10_16-PM-01_26_10
Last ObjectModification: 2018_12_15-PM-10_01_32

Theory : euclidean!plane!geometry


Home Index