Nuprl Lemma : cong-angle-out-exists-iff

e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  ((((b ≠ a ∧ b ≠ c) ∧ y ≠ x) ∧ y ≠ z)
   (abc ≅a xyz ⇐⇒ ∃a',c',x',z':Point. ((((out(b a'a) ∧ out(b c'c)) ∧ out(y x'x)) ∧ out(y z'z)) ∧ a'bc' ≅a x'yz')))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry cand: c∧ B geo-cong-angle: abc ≅a xyz geo-out: out(p ab)
Lemmas referenced :  geo-cong-angle_wf geo-out_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf cong-angle-out-exists2 geo-sep-sym cong-angle-out-aux2_1 geo-between-out geo-between-sep geo-out_transitivity geo-out_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule productIsType inhabitedIsType because_Cache applyEquality instantiate independent_isectElimination dependent_functionElimination independent_functionElimination dependent_pairFormation_alt rename

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((((b  \mneq{}  a  \mwedge{}  b  \mneq{}  c)  \mwedge{}  y  \mneq{}  x)  \mwedge{}  y  \mneq{}  z)
    {}\mRightarrow{}  (abc  \mcong{}\msuba{}  xyz
          \mLeftarrow{}{}\mRightarrow{}  \mexists{}a',c',x',z':Point
                    ((((out(b  a'a)  \mwedge{}  out(b  c'c))  \mwedge{}  out(y  x'x))  \mwedge{}  out(y  z'z))  \mwedge{}  a'bc'  \mcong{}\msuba{}  x'yz')))



Date html generated: 2019_10_16-PM-01_31_27
Last ObjectModification: 2018_11_12-PM-03_55_35

Theory : euclidean!plane!geometry


Home Index