Nuprl Lemma : geo-add-length-property1
∀g:EuclideanPlane. ∀s1,s2:geo-segment(g).  B(X|s1||s1| + |s2|)
Proof
Definitions occuring in Statement : 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-segment: geo-segment(e)
, 
geo-X: X
, 
euclidean-plane: EuclideanPlane
, 
geo-between: B(abc)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
geo-add-length: p + q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
basic-geometry-: BasicGeometry-
, 
squash: ↓T
, 
euclidean-plane: EuclideanPlane
, 
implies: P 
⇒ Q
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-extend_wf, 
geo-O_wf, 
subtype_rel_sets, 
geo-point_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-sep_wf, 
geo-Op-sep, 
sq_stable__geo-between, 
geo-between-symmetry, 
geo-between-inner-trans, 
geo-between-exchange3, 
euclidean-plane_wf, 
geo-segment_wf, 
geo-length_wf1
Rules used in proof : 
applyEquality, 
because_Cache, 
lambdaEquality_alt, 
instantiate, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIsType1, 
rename, 
setElimination, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}s1,s2:geo-segment(g).    B(X|s1||s1|  +  |s2|)
Date html generated:
2019_10_29-AM-09_15_42
Last ObjectModification:
2019_10_18-PM-03_16_08
Theory : euclidean!plane!geometry
Home
Index