Nuprl Lemma : geo-add-length-property1

g:EuclideanPlane. ∀s1,s2:geo-segment(g).  B(X|s1||s1| |s2|)


Proof




Definitions occuring in Statement :  geo-add-length: q geo-length: |s| geo-segment: geo-segment(e) geo-X: X euclidean-plane: EuclideanPlane geo-between: B(abc) all: x:A. B[x]
Definitions unfolded in proof :  geo-add-length: q subtype_rel: A ⊆B so_lambda: λ2x.t[x] guard: {T} uimplies: supposing a so_apply: x[s] prop: and: P ∧ Q sq_stable: SqStable(P) basic-geometry-: BasicGeometry- squash: T euclidean-plane: EuclideanPlane implies:  Q basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-extend_wf geo-O_wf subtype_rel_sets geo-point_wf geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane-structure_wf geo-primitives_wf geo-X_wf geo-sep_wf geo-Op-sep sq_stable__geo-between geo-between-symmetry geo-between-inner-trans geo-between-exchange3 euclidean-plane_wf geo-segment_wf geo-length_wf1
Rules used in proof :  applyEquality because_Cache lambdaEquality_alt instantiate independent_isectElimination dependent_set_memberEquality_alt productElimination imageMemberEquality baseClosed imageElimination equalityIsType1 rename setElimination universeIsType independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype inhabitedIsType hypothesis hypothesisEquality sqequalRule thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}s1,s2:geo-segment(g).    B(X|s1||s1|  +  |s2|)



Date html generated: 2019_10_29-AM-09_15_42
Last ObjectModification: 2019_10_18-PM-03_16_08

Theory : euclidean!plane!geometry


Home Index