Nuprl Lemma : geo-gt-irrefl

e:EuclideanPlane. ∀a,b:Point.  ab > ab)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-gt: cd > ab geo-point: Point all: x:A. B[x] not: ¬A
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False geo-gt: cd > ab squash: T exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- uiff: uiff(P;Q) geo-eq: a ≡ b
Lemmas referenced :  geo-gt_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-between-symmetry geo-between-sep geo-sep-sym geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-O-X geo-construction-unicity geo-strict-between-sep3 geo-strict-between-implies-between geo-between-exchange3 geo-between-exchange4 geo-congruent-iff-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin sqequalHypSubstitution imageElimination productElimination hypothesis because_Cache independent_functionElimination voidElimination universeIsType introduction extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType dependent_functionElimination setElimination rename equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (\mneg{}ab  >  ab)



Date html generated: 2019_10_16-PM-01_16_45
Last ObjectModification: 2019_04_19-PM-02_44_54

Theory : euclidean!plane!geometry


Home Index