Nuprl Lemma : geo-gt-irrefl
∀e:EuclideanPlane. ∀a,b:Point.  (¬ab > ab)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-gt: cd > ab
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
geo-gt: cd > ab
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
geo-eq: a ≡ b
Lemmas referenced : 
geo-gt_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-between-symmetry, 
geo-between-sep, 
geo-sep-sym, 
geo-proper-extend-exists, 
geo-O_wf, 
geo-X_wf, 
geo-sep-O-X, 
geo-construction-unicity, 
geo-strict-between-sep3, 
geo-strict-between-implies-between, 
geo-between-exchange3, 
geo-between-exchange4, 
geo-congruent-iff-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
dependent_functionElimination, 
setElimination, 
rename, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (\mneg{}ab  >  ab)
Date html generated:
2019_10_16-PM-01_16_45
Last ObjectModification:
2019_04_19-PM-02_44_54
Theory : euclidean!plane!geometry
Home
Index