Nuprl Lemma : geo-gt_functionality

e:EuclideanPlane. ∀a1,a2,b1,b2,c1,c2,d1,d2:Point.
  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  d1 ≡ d2  (a1b1 > c1d1 ⇐⇒ a2b2 > c2d2))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-gt: cd > ab geo-eq: a ≡ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-gt: cd > ab member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] squash: T
Lemmas referenced :  geo-eq_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf squash_wf exists_wf geo-between_wf geo-congruent_wf geo-sep_wf iff_wf geo-between_functionality geo-eq_weakening geo-congruent_functionality geo-sep_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule instantiate independent_isectElimination independent_pairFormation lambdaEquality productEquality addLevel productElimination independent_functionElimination imageElimination existsFunctionality dependent_functionElimination andLevelFunctionality imageMemberEquality baseClosed impliesFunctionality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2,c1,c2,d1,d2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  d1  \mequiv{}  d2  {}\mRightarrow{}  (a1b1  >  c1d1  \mLeftarrow{}{}\mRightarrow{}  a2b2  >  c2d2))



Date html generated: 2018_05_22-AM-11_53_57
Last ObjectModification: 2018_03_29-PM-06_34_58

Theory : euclidean!plane!geometry


Home Index