Nuprl Lemma : geo-gt_functionality
∀e:EuclideanPlane. ∀a1,a2,b1,b2,c1,c2,d1,d2:Point.
  (a1 ≡ a2 
⇒ b1 ≡ b2 
⇒ c1 ≡ c2 
⇒ d1 ≡ d2 
⇒ (a1b1 > c1d1 
⇐⇒ a2b2 > c2d2))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-gt: cd > ab
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-gt: cd > ab
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
Lemmas referenced : 
geo-eq_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
squash_wf, 
exists_wf, 
geo-between_wf, 
geo-congruent_wf, 
geo-sep_wf, 
iff_wf, 
geo-between_functionality, 
geo-eq_weakening, 
geo-congruent_functionality, 
geo-sep_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
independent_pairFormation, 
lambdaEquality, 
productEquality, 
addLevel, 
productElimination, 
independent_functionElimination, 
imageElimination, 
existsFunctionality, 
dependent_functionElimination, 
andLevelFunctionality, 
imageMemberEquality, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2,c1,c2,d1,d2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  d1  \mequiv{}  d2  {}\mRightarrow{}  (a1b1  >  c1d1  \mLeftarrow{}{}\mRightarrow{}  a2b2  >  c2d2))
Date html generated:
2018_05_22-AM-11_53_57
Last ObjectModification:
2018_03_29-PM-06_34_58
Theory : euclidean!plane!geometry
Home
Index