Nuprl Lemma : geo-line-sep-or-lemma
∀g:EuclideanParPlane. ∀l,m,p:Line.
  (((∀L,M,N:Line.  (L \/ M 
⇒ (L \/ N ∨ M \/ N))) ∧ l \/ m) 
⇒ (geo-line-sep(g;p;l) ∨ geo-line-sep(g;p;m)))
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-intersect: L \/ M
, 
geo-line-sep: geo-line-sep(g;l;m)
, 
geo-line: Line
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
euclidean-parallel-plane: EuclideanParPlane
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-line-sep_wf, 
geo-intersect-symmetry, 
geo-intersect-lines-iff, 
or_wf, 
geoline-subtype1, 
geo-intersect_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
euclidean-parallel-plane_wf, 
subtype_rel_transitivity, 
euclidean-planes-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-line_wf, 
all_wf
Rules used in proof : 
inrFormation, 
inlFormation, 
rename, 
setElimination, 
functionEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
unionElimination, 
independent_functionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanParPlane.  \mforall{}l,m,p:Line.
    (((\mforall{}L,M,N:Line.    (L  \mbackslash{}/  M  {}\mRightarrow{}  (L  \mbackslash{}/  N  \mvee{}  M  \mbackslash{}/  N)))  \mwedge{}  l  \mbackslash{}/  m)
    {}\mRightarrow{}  (geo-line-sep(g;p;l)  \mvee{}  geo-line-sep(g;p;m)))
Date html generated:
2018_05_23-PM-06_09_34
Last ObjectModification:
2018_05_23-PM-04_36_06
Theory : euclidean!plane!geometry
Home
Index