Nuprl Lemma : geo-line-sep-or-lemma

g:EuclideanParPlane. ∀l,m,p:Line.
  (((∀L,M,N:Line.  (L \/  (L \/ N ∨ \/ N))) ∧ \/ m)  (geo-line-sep(g;p;l) ∨ geo-line-sep(g;p;m)))


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-intersect: \/ M geo-line-sep: geo-line-sep(g;l;m) geo-line: Line all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  iff: ⇐⇒ Q so_apply: x[s] euclidean-parallel-plane: EuclideanParPlane so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: or: P ∨ Q member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-line-sep_wf geo-intersect-symmetry geo-intersect-lines-iff or_wf geoline-subtype1 geo-intersect_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf euclidean-parallel-plane_wf subtype_rel_transitivity euclidean-planes-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-line_wf all_wf
Rules used in proof :  inrFormation inlFormation rename setElimination functionEquality because_Cache lambdaEquality sqequalRule independent_isectElimination instantiate applyEquality isectElimination extract_by_obid introduction productEquality unionElimination independent_functionElimination hypothesisEquality dependent_functionElimination hypothesis cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanParPlane.  \mforall{}l,m,p:Line.
    (((\mforall{}L,M,N:Line.    (L  \mbackslash{}/  M  {}\mRightarrow{}  (L  \mbackslash{}/  N  \mvee{}  M  \mbackslash{}/  N)))  \mwedge{}  l  \mbackslash{}/  m)
    {}\mRightarrow{}  (geo-line-sep(g;p;l)  \mvee{}  geo-line-sep(g;p;m)))



Date html generated: 2018_05_23-PM-06_09_34
Last ObjectModification: 2018_05_23-PM-04_36_06

Theory : euclidean!plane!geometry


Home Index