Nuprl Lemma : geo-intersect-lines-iff
∀e:EuclideanPlane. ∀p,l:Line.  (p \/ l ⇐⇒ geo-line-sep(e;p;l) ∧ (∃x:Point. (x I p ∧ x I l)))
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M, 
geo-incident: p I L, 
geo-line-sep: geo-line-sep(g;l;m), 
geo-line: Line, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
geo-line-sep: geo-line-sep(g;l;m), 
cand: A c∧ B, 
geo-line: Line, 
pi1: fst(t), 
pi2: snd(t), 
geo-incident: p I L, 
oriented-plane: OrientedPlane, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
basic-geometry: BasicGeometry, 
geo-lsep: a # bc, 
geo-midpoint: a=m=b, 
geo-strict-between: a-b-c
Lemmas referenced : 
geo-intersect_wf, 
geoline-subtype1, 
geo-line-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
exists_wf, 
geo-point_wf, 
geo-incident_wf, 
geo-line_wf, 
geo-intersect-iff2, 
geo-colinear_wf, 
geo-lsep_wf, 
lsep-all-sym2, 
colinear-lsep-general, 
geo-incident-line, 
geo-sep_wf, 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
equal_wf, 
geo-colinear-is-colinear-set, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-strict-between-incident, 
geo-strict-between_wf, 
geoline_wf, 
uall_wf, 
pi1_wf_top, 
pi2_wf, 
subtype_rel_product, 
top_wf, 
geo-intersect-lines, 
lsep-colinear-sep, 
all_wf, 
symmetric-point-construction, 
geo-sep-sym, 
geo-between-implies-colinear, 
geo-left_wf, 
geo-congruent-symmetry, 
geo-congruent-sep, 
strict-between-left-right, 
geo-colinear-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
productElimination, 
productEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairEquality, 
inrFormation, 
inlFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
addLevel, 
existsFunctionality, 
andLevelFunctionality, 
independent_pairEquality, 
levelHypothesis, 
promote_hyp, 
rename, 
existsLevelFunctionality, 
unionElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p,l:Line.    (p  \mbackslash{}/  l  \mLeftarrow{}{}\mRightarrow{}  geo-line-sep(e;p;l)  \mwedge{}  (\mexists{}x:Point.  (x  I  p  \mwedge{}  x  I  l)))
Date html generated:
2018_05_22-PM-01_06_24
Last ObjectModification:
2018_05_12-AM-10_59_56
Theory : euclidean!plane!geometry
Home
Index