Nuprl Lemma : strict-between-left-right

e:EuclideanPlane. ∀x,y,p,a,q:Point.  (p leftof yx  Colinear(a;x;y)  p-a-q  leftof xy)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-left: leftof bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T oriented-plane: OrientedPlane guard: {T} and: P ∧ Q cand: c∧ B prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a euclidean-plane: EuclideanPlane or: P ∨ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m basic-geometry: BasicGeometry iff: ⇐⇒ Q exists: x:A. B[x] basic-geometry-: BasicGeometry-
Lemmas referenced :  lsep-opposite-iff lsep-all-sym2 geo-strict-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear_wf geo-left_wf geo-point_wf geo-sep-or geo-sep-sym left-implies-sep geo-sep_wf colinear-lsep-cycle geo-colinear-is-colinear-set length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf lsep-all-sym geo-strict-between-sep3 geo-strict-between-implies-colinear geo-strict-between-implies-between geo-between_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule hypothesisEquality independent_functionElimination because_Cache hypothesis productElimination isectElimination applyEquality instantiate independent_isectElimination setElimination rename dependent_set_memberEquality unionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed dependent_pairFormation productEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,y,p,a,q:Point.    (p  leftof  yx  {}\mRightarrow{}  Colinear(a;x;y)  {}\mRightarrow{}  p-a-q  {}\mRightarrow{}  q  leftof  xy)



Date html generated: 2018_05_22-AM-11_54_39
Last ObjectModification: 2018_05_12-AM-10_57_32

Theory : euclidean!plane!geometry


Home Index