Nuprl Lemma : geo-strict-between-incident
∀[e:EuclideanPlane]. ∀[l:LINE]. ∀[a,b,v:Point].  (a-v-b 
⇒ a I l 
⇒ b I l 
⇒ v I l)
Proof
Definitions occuring in Statement : 
geo-incident: p I L
, 
geoline: LINE
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
basic-geometry-: BasicGeometry-
, 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
geo-incident: p I L
, 
geo-colinear: Colinear(a;b;c)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
geo-colinear-incident, 
geo-strict-between-sep1, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
not_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
equal_wf, 
geoline_wf, 
geoline-subtype1, 
geo-line_wf, 
geo-incident_wf, 
geo-strict-between_wf, 
geo-point_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
productEquality, 
applyEquality, 
instantiate, 
productElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[l:LINE].  \mforall{}[a,b,v:Point].    (a-v-b  {}\mRightarrow{}  a  I  l  {}\mRightarrow{}  b  I  l  {}\mRightarrow{}  v  I  l)
Date html generated:
2018_05_22-PM-01_04_50
Last ObjectModification:
2018_05_11-PM-11_11_45
Theory : euclidean!plane!geometry
Home
Index