Nuprl Lemma : geo-strict-between-incident

[e:EuclideanPlane]. ∀[l:LINE]. ∀[a,b,v:Point].  (a-v-b    l)


Proof




Definitions occuring in Statement :  geo-incident: L geoline: LINE euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-point: Point uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] basic-geometry-: BasicGeometry- basic-geometry: BasicGeometry uimplies: supposing a geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m geo-incident: L geo-colinear: Colinear(a;b;c) subtype_rel: A ⊆B guard: {T} geo-line: Line pi1: fst(t) pi2: snd(t)
Lemmas referenced :  geo-colinear-incident geo-strict-between-sep1 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf not_wf geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf equal_wf geoline_wf geoline-subtype1 geo-line_wf geo-incident_wf geo-strict-between_wf geo-point_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination dependent_functionElimination sqequalRule because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed lambdaEquality productEquality applyEquality instantiate productElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[l:LINE].  \mforall{}[a,b,v:Point].    (a-v-b  {}\mRightarrow{}  a  I  l  {}\mRightarrow{}  b  I  l  {}\mRightarrow{}  v  I  l)



Date html generated: 2018_05_22-PM-01_04_50
Last ObjectModification: 2018_05_11-PM-11_11_45

Theory : euclidean!plane!geometry


Home Index