Nuprl Lemma : geo-colinear-incident

[e:EuclideanPlane]. ∀[l:LINE]. ∀[a,b,v:Point].  (a ≠  Colinear(a;b;v)    l)


Proof




Definitions occuring in Statement :  geo-incident: L geoline: LINE euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-incident: L all: x:A. B[x] geo-colinear: Colinear(a;b;c) not: ¬A false: False and: P ∧ Q geo-line: Line pi1: fst(t) pi2: snd(t) uiff: uiff(P;Q) oriented-plane: OrientedPlane exists: x:A. B[x] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-incident_wf geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf not_wf geo-between_wf equal_wf geoline_wf geoline-subtype1 geo-line_wf geo-point_wf and_wf geo-incident-line oriented-colinear-append cons_wf nil_wf cons_member l_member_wf exists_wf geo-colinear-is-colinear-set list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule because_Cache lambdaEquality dependent_functionElimination productEquality productElimination isect_memberEquality voidElimination rename addLevel hyp_replacement equalitySymmetry dependent_set_memberEquality independent_pairFormation equalityTransitivity applyLambdaEquality setElimination levelHypothesis independent_functionElimination dependent_pairFormation inlFormation inrFormation voidEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[l:LINE].  \mforall{}[a,b,v:Point].
    (a  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;v)  {}\mRightarrow{}  a  I  l  {}\mRightarrow{}  b  I  l  {}\mRightarrow{}  v  I  l)



Date html generated: 2018_05_22-PM-01_04_39
Last ObjectModification: 2018_05_11-PM-11_08_25

Theory : euclidean!plane!geometry


Home Index