Nuprl Lemma : geo-out-iff-colinear

e:BasicGeometry. ∀p,a,b:Point.  (out(p ab) ⇐⇒ (Colinear(p;a;b) ∧ a_p_b)) ∧ p ≠ a ∧ p ≠ b)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q
Definitions unfolded in proof :  cand: c∧ B basic-geometry: BasicGeometry rev_implies:  Q geo-out: out(p ab) uimplies: supposing a guard: {T} subtype_rel: A ⊆B subtract: m cons: [a b] select: L[n] uall: [x:A]. B[x] true: True squash: T less_than: a < b prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-sep_wf not_wf geo-colinear_wf geo-out_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-between_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-out-colinear geo-colinear-is-colinear-set geo-sep-irrefl' geo-sep_functionality geo-eq_weakening geo-between_functionality geo-between-same geo-between-inner-trans geo-between-symmetry geo-sep-sym geo-between-outer-trans geo-between-exchange4 geo-colinear-implies
Rules used in proof :  rename setElimination productEquality productElimination independent_isectElimination instantiate applyEquality isectElimination baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality sqequalRule hypothesis because_Cache independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution promote_hyp

Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,a,b:Point.    (out(p  ab)  \mLeftarrow{}{}\mRightarrow{}  (Colinear(p;a;b)  \mwedge{}  (\mneg{}a\_p\_b))  \mwedge{}  p  \mneq{}  a  \mwedge{}  p  \mneq{}  b)



Date html generated: 2017_10_02-PM-06_27_00
Last ObjectModification: 2017_08_05-PM-04_20_31

Theory : euclidean!plane!geometry


Home Index