Nuprl Lemma : geo-parallel_functionality
∀e:EuclideanPlane. ∀a,b,c,d,a',b',c',d':Point.
  (a ≡ a' 
⇒ b ≡ b' 
⇒ c ≡ c' 
⇒ d ≡ d' 
⇒ geo-parallel(e;a;b;c;d) 
⇒ geo-parallel(e;a';b';c';d'))
Proof
Definitions occuring in Statement : 
geo-parallel: geo-parallel(e;a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
oriented-plane: OrientedPlane
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
geo-parallel: geo-parallel(e;a;b;c;d)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-lsep_functionality, 
geo-colinear_functionality, 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-eq_wf, 
geo-parallel_wf, 
geo-colinear_wf, 
geo-eq_inversion, 
geo-eq_weakening, 
geo-sep_functionality
Rules used in proof : 
instantiate, 
sqequalRule, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,a',b',c',d':Point.
    (a  \mequiv{}  a'  {}\mRightarrow{}  b  \mequiv{}  b'  {}\mRightarrow{}  c  \mequiv{}  c'  {}\mRightarrow{}  d  \mequiv{}  d'  {}\mRightarrow{}  geo-parallel(e;a;b;c;d)  {}\mRightarrow{}  geo-parallel(e;a';b';c';d'))
Date html generated:
2018_05_22-PM-00_13_33
Last ObjectModification:
2018_05_21-AM-01_18_58
Theory : euclidean!plane!geometry
Home
Index