Nuprl Lemma : geo-perp-in-iff2
∀e:BasicGeometry. ∀a,b,c,d:Point.  (a ≠ b 
⇒ c ≠ d 
⇒ (ab  ⊥c cd 
⇐⇒ Colinear(a;b;c) ∧ Racd ∧ Rbcd))
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd
, 
basic-geometry: BasicGeometry
, 
right-angle: Rabc
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
geo-perp-in: ab  ⊥x cd
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
or: P ∨ Q
Lemmas referenced : 
geo-perp-in-iff, 
geo-colinear-same, 
geo-colinear_wf, 
exists_wf, 
geo-point_wf, 
geo-sep_wf, 
right-angle_wf, 
geo-perp-in_wf, 
iff_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep-or, 
geo-sep-sym
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
sqequalRule, 
isectElimination, 
because_Cache, 
productEquality, 
applyEquality, 
lambdaEquality, 
addLevel, 
impliesFunctionality, 
instantiate, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
unionElimination, 
dependent_pairFormation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d  {}\mRightarrow{}  (ab    \mbot{}c  cd  \mLeftarrow{}{}\mRightarrow{}  Colinear(a;b;c)  \mwedge{}  Racd  \mwedge{}  Rbcd))
Date html generated:
2018_05_22-PM-00_05_14
Last ObjectModification:
2018_04_19-AM-01_40_34
Theory : euclidean!plane!geometry
Home
Index