Nuprl Lemma : geo-perp-in-iff2

e:BasicGeometry. ∀a,b,c,d:Point.  (a ≠  c ≠  (ab  ⊥cd ⇐⇒ Colinear(a;b;c) ∧ Racd ∧ Rbcd))


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry right-angle: Rabc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q geo-perp-in: ab  ⊥cd cand: c∧ B uall: [x:A]. B[x] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane or: P ∨ Q
Lemmas referenced :  geo-perp-in-iff geo-colinear-same geo-colinear_wf exists_wf geo-point_wf geo-sep_wf right-angle_wf geo-perp-in_wf iff_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep-or geo-sep-sym
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination independent_pairFormation sqequalRule isectElimination because_Cache productEquality applyEquality lambdaEquality addLevel impliesFunctionality instantiate independent_isectElimination setElimination rename dependent_set_memberEquality unionElimination dependent_pairFormation

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d  {}\mRightarrow{}  (ab    \mbot{}c  cd  \mLeftarrow{}{}\mRightarrow{}  Colinear(a;b;c)  \mwedge{}  Racd  \mwedge{}  Rbcd))



Date html generated: 2018_05_22-PM-00_05_14
Last ObjectModification: 2018_04_19-AM-01_40_34

Theory : euclidean!plane!geometry


Home Index